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We present a new solution method for a class of first order analytic difference
equations. The method yields explicit ‘‘minimal’’ solutions that are essentially
unique. Special difference equations give rise to minimal solutions that may be
viewed as generalized gamma functions of hyperbolic, trigonometric and elliptic
type—Euler’s gamma function being of rational type. We study these generalized
gamma functions in considerable detail. The scattering and weight functions (u-
and w-functions) associated to various integrable quantum systems can be ex-
pressed in terms of our generalized gamma functions. We obtain detailed informa-
tion on these u- and w-functions, exploiting the difference equations they satisfy.
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l. INTRODUCTION

This paper is concerned both with the general theory of first order analytic difference equa-
tions (from now on AAEs) and with certain special functions that arise as solutions to AAEs of a
quite restricted type. As announced and partly detailed in our survey' and lectures,” among these
special functions are the weight functions and scattering amplitudes associated with relativistic
quantum integrable systems of Calogero-Moser type—which, in turn, for special parameter
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1070 S. N. M. Ruijsenaars: Difference equations and integrable systems

choices reduce to functions occurring in various well-known infinite-dimensional integrable sys-
tems. such as the sine-Gordon theory, the XYZ chain and the eight—verte)f model.

The first part of the paper (Sections II and III) does not involve‘ integrable systems. To
describe the scope of the results obtained therein, we start from two quite elementary first order

AAEs, namely,

M(w+1)=cM(w), weC c e C*, 1.1
Mw+1)=wM(w), weC (1.2)

Obviously, the first one is solved by the function exp(w Inc) and the second. one by Euler’s
gamma function I'(w). These functions can be used as building blocks for solving AAEs of the

form
Mw+1)=0w)M(w), weC, (1.3)
where Q(w) is a rational function of w. Indeed, any function of the form

L T(w=b))

M) = q Ty’

a,bj,ckeC, (1-4)

satisfies (1.3) with Q(w) rational, and varying the parameters a,M,N,b;,c;, yields all rational
functions.

Suppose now that one can find meromorphic solutions to the AAE (1.3) for Q (w) equal to the
Weierstrass o-function o(w;w,w") with o, —iw' e (0,%), and its trigonometric ( —iw’ =) and
hyperbolic (w=%) degenerations—the sine and sinh-functions. (The additional factor
cexp(aw?) in the degenerate o-functions is easily taken into account—one need only include a
factor exp(P(w)) with P(w) a third order polynomial.) Then the respective solutions
M (W), M io(w) and My (w) can be used as building blocks to solve the AAE (1.3) with
Q(w) any elliptic function with periods 2w,2w’ or its trigonometric and hyperbolic counterparts,
resp. Indeed, any elliptic function Q(w) can be written in the form (1.4), with the exponential
replaced by a constant and I'(w) by o(w), so a corresponding meromorphic solution M(w) to
(1.3) is obtained by taking I'—= M, in (1.4).

Among other things, this paper presents and studies special functions generalizing the gamma
function, which can be used as building blocks to solve AAEs of the three types just described. In
one case the pertinent function is not really new—up to a constant and an exponential it amounts
to Thomae’s g-gamma function.>* For the other two cases, however, the corresponding general-
ized gamma functions are new, and turn out to have some quite remarkable properties. The
comprehensive study of these functions (to be found in Section IIT) constitutes one of the principal
results of this paper.

In order to sketch the setting from which our generalized gamma functions emerge, we begin
by pointing out that even when one restricts attention to functions Q(w) and solutions M (w) that
are meromorphic (as we do), there is an enormous ambiguity in the solution. Indeed, assuming
M (w) is a solution and m(w) any meromorphic function with period 1, it is obvious that the
function m(w)M(w) is a solution as well. The importance of singling out solutions with special
properties is therefore evident.

In previous literature, the class of AAEs to be studied—that is, the class of meromorphic
functions Q(w)—has been narrowed down by insisting that Q(w) have a special asymptotics for
Re w— <. In particular, Norlund in his comprehensive monograph® uses this prescribed asymp-

totics to construct the uniquely determined solution he refers to as the ‘‘Hauptlosung’’ (see also
Refs. 6-8).
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By contrast, the key requirement on Q(w) and M(w) we impose is a special asymptotics for
|Tm w|— oo, satisfied in particular for functions Q(w) that are periodic in the imaginary direction.
As will transpire below, this leads to essentially the same solutions only for rational and hyper-
bolic Q(w), whereas Norlund’s methods do not apply to the trigonometric and elliptic cases.

As a matter of fact, we have opted for a shift in the imaginary direction—in contrast to the
shift by 1 in the AAE (1.3). This corresponds to the applications to integrable systems, and is also
convenient in view of our different requirements concerning asymptotics. Moreover, we shall treat
the step size as a variable, and we do not single out the positive or negative imaginary direction.
Thus our starting point is the AAE

F(z+ial2)=®(z)F(z—ial2), (1.5)

where ®(z) is meromorphic, and where the step size a is an arbitrary positive number. Of course,
this AAE is related by a scaling and a shift over half the step size to the AAE (1.3), so all results
can be rephrased for (1.3)—at the expense, however, of cumbersome notation, which moreover
hides some symmetries that naturally emerge when the second convention is used.

We are now prepared to describe the organization and results of the paper in more detail.
Section II contains our general results on first order AAEs. In Subsection IT A we set the stage by
delineating the class of functions ®(z) allowed in (1.5). As a first requirement, we insist on
®(z) being free of zeros and poles in a strip [Imz|<s, s>0. We denote such AAEs as regular
AAEs, and refer to solutions that are free of zeros and poles in the strip |Imz| <s+a/2 as regular
solutions. The poles and zeros of a regular solution F(z) outside |Imz|<s+a/2 are completely
determined by the poles and zeros of ®(z) outside |Imz|<s, as easily follows from (1.5).

Regular AAEs can be rewritten in the additive form

fz+ial2)—f(z—ial2)=¢(z), |Imz|<s, (1.6)

where ¢(z) denotes (a suitable branch of) In®(z). Thus the search for regular solutions to (1.5) is
reduced to finding solutions f(z) to (1.6) that are analytic for |Imz|<s+ a/2. Using well-known
properties of the partial differential operator d/9z=d,+id, and Runge’s approximation theorem,
it can be proved that such solutions exist. We shall not detail this, however, since the existence
arguments yield no information on the solution thus obtained. (An existence proof can be as-
sembled from Ref. 9, for example.)

By contrast, the extra requirements we impose on ®(z) (or equivalently ¢(z)) enable us to
construct explicit solutions, with special properties that render them essentially unique. Roughly
speaking, we require that ¢(z) have at worst polynomial increase as |[Rez|—, and construct
solutions f(z) with the same property, which are moreover regular (i.e., analytic for
|Imz|<s+a/2). We refer to such solutions as minimal solutions: both their singularities and their
asymptotics for |Rez|— are ‘‘best possible”’—being enforced by the singularities and asymp-
totics of ¢(z). Among other things, Theorem II.1 entails the uniqueness up to a constant of
minimal solutions to the additive AAE (1.6)—assuming they exist.

In Subsections IIB and IIC we study two classes of AAEs that do admit minimal
solutions—as is shown by exhibiting a minimal solution via explicit formulas involving ¢(x),x
e R. The key results are Theorem II.2 and ILS, resp. Theorem IL2 presupposesathat ¢(x) is an
L'(R)-function, whose Fourier transform gz(y) is in L'(R), too, and satisfies ¢(y)=0(y) for
y—0j its corollary Theorem I1.3 handles functions that have these properties after taking a certain
number of x-derivatives. In Theorem IL5 it is assumed that ¢(x) has period 7/r,r>0, and its
zeroth Fourier coefficient vanishes; then Theorem IL6 handles functions ¢(x) for which ¢®
(x),k € IN*, has these properties.

The arbitrary additive constant in a minimal solution to the AAE (1.6) can and will be fixed
in the Fourier transform setting of Theorem 11.2 by requiring that the solution go to 0 for x to o;
in the Fourier series setting of Theorem IL5 it is fixed by requiring that the minimal solution

J. Math. Phys., Vol. 38, No. 2, February 1997



1072 S. N. M. Ruijsenaars: Difference equations and integrable systems

(which is shown to be #/r-periodic) have vanishing zeroth Fourier coefficient. The unique soly-
tion f(a;z) thus obtained is given by (2.26) and (2.106), resp. From the identity (2.38) it then
follows that f(a;z) satisfies the addition formula (2.28) in both settings.

The solution f(a;z) has another illuminating feature: In both cases it satisfies

lim iaf(a;z)=y(z), |Imz|<s, (1.7)
all

where ¢(z) is a primitive of ¢(z). Therefore, iaf(a;z) may be viewed as a ‘‘generalized primi-
tive’” of ¢(z). It should be noted that this feature is obviously compatible with the AAE (1.6), but
not a priori implied by it: In view of the huge multiplier ambiguity already discussed, the pertinent
limit typically does not exist for more general solutions.

Theorems I1.4 and II.7 are concerned with the a0 limit of minimal solutions to the AAE
(1.6) when ¢ is allowed to have a suitable a-dependence. At first sight, the assumptions may
appear very restrictive, but they can in fact be verified for the applications occurring in Section III.
The limit (1.7) may be viewed as a quite special consequence of these zero step size limit
theorems.

In Appendix A we derive various results that involve Euler’s gamma function, not only as a
concrete illustration of the theory developed in Subsections II A and II B, but also to prepare the
ground for Section III, which is devoted to a study of generalized gamma functions. Below (1.4)
we have already delineated the three cases that will be considered in Section III. Since we employ
the AAE (1.5) and not the AAE (1.3), however, the trigonometric case turns into the hyperbolic
case and vice versa. Moreover, the Weierstrass o-function and its degenerations are traded for
close relatives, to which the theory of Section II applies. The resulting minimal solutions (rendered
unique in obvious ways) will be dubbed G-functions.

More specifically, Subsection III A deals with the hyperbolic G-function—the unique mini-
mal solution to the AAE

G(z+ial2)=2ch(7z/b)G(z—ial2), b>0, (1.8)

that satisfies G(0)=1 and |G(x)|=1 for real x. Now it is evident that any solution G(z) to (1.8)
has the property that the quotient G(z+ib/2)/G(z—ib/2) is an ia-antiperiodic function. It is not
at all obvious, though, that a solution exists for which this quotient equals 2ch(mz/a). The
hyperbolic G-function does have this striking property: It is given by
[*dy | sin2yz z
Ghyp(a,b,z)~exp( lfo . ( Sshayshby aby) ) [Im2z|<a+b, (1.9)
and hence is manifestly symmetric under a« b.

We present our results on the hyperbolic G-function in seven propositions. Proposition IIL.1
deals with the three elementary AAEs to which G is a minimal solution, and Prop. II1.2 details
various automorphy properties. As already noted above, the poles and zeros of a regular solution
to (1.5) readily follow from those of ®(z); similarly, residues at simple poles can be determined
in terms of ®(z). This is worked out for Ghyp in Prop. II1.3. An important dichotomy first emerges
here: When a/b is an irrational number, all poles and zeros are simple, whereas for rational
alb this is not the case.

Since Gyyy(z) is a minimal solution, its logarithm is polynomially bounded for [Rez|— and
|Imz|<a/2. For the case at hand, the precise asymptotics can be explicitly determined by com-
parison to the case a=b. (This case has special features that render it more accessible.) Proposi-
tion II1.4 presents the details; the restriction on |Imz]| is readily lifted by exploiting the AAE (1.8).

From the representation (1.9) it is already clear that for fixed z in the strip |Im2z|<a+b the
G-function is real-analytic on (0,%) in the parameters a and b. In Prop. IIL.5 we prove that G
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actually extends to a function that is meromorphic in a,b and Z, as long as the quotient b/a stays
away from the negative real axis. This readily follows from a representation for the G-function in
terms of an infinite product of gamma functions. To control the convergence of this product, some
estimates on Laplace transforms assembled in Appendix B are crucial.

The latter estimates are also exploited in proving that a renormalized version of the hyperbolic
G-function converges to the gamma function when one takes a=1 and |b|—0 in any sector
|Argbl<x,x e [0,). This is detailed in Prop. IIL.6. Two more zero step size limits are obtained
in Prop. III.7. In the latter context the limit has branch cuts on the imaginary axis that arise from
a confluence of zeros and poles.

Before turning to a sketch of Subsection III B, we would like to mention that Ghyp s not only
the key building block for the hyperbolic scattering and weight functions of Subsections IVA and
VA, but also for our recent generalization of Gauss’ hypergeometric function ,F ;. In this context
Ghyp Plays the role of the gamma function in the Barnes representation for ,F;—except that the
generalization is far more symmetric. For ,F; the symmetry is broken, since a step size is taken to
zero that leads to the two quite different limiting functions of Propositions I11.6 and II1.7 (cf. Ref.
2, Subsection 6.3, and papers to appear).

In Subsection III B we study the elliptic G-function, which is given by

sin2nrz

Gen(r.a,b;z)=exp ' < Dyshnrashnrb |’

|Im2z|<a+b, (1.10)

along the same lines as its hyperbolic counterpart (1.9). It is not obvious, but true that G is a
minimal solution to an AAE of the form

g%{—;—%=exp(c0+clz+czz2)cr(z+ib/2;7r/2r,ib/2), (1.11)
where o denotes the Weierstrass o-function. Thus it can be used as a building block to solve the
AAE (1.5) with ®(z) an elliptic function—as already discussed above.

As it turns out, it is quite convenient to trade the o-function o(z;m/2r,ial2) for a closely
related function s(r,a;z) (2.89). The latter function is odd and 7r/r-antiperiodic in z, and has
limits »~'sinrz and 7a " 'shma ™'z for alo and r|0, cf. (2.90) and (2.92), resp. Similarly, the
function arising on the rhs of (1.11) will be denoted R(r,b;z). In view of (1.10) it is given
explicitly by

Z cos2nrz

)= = 2 | Im2z|<b, (L.12)
R(r,b;z) exp( Zl nshnrb)’ |Im2z|

s it is even and 7r/r-periodic in z. Most of the propositions in Subsection III B may be viewed as
generalizations of hyperbolic counterparts, since one has

lim exp(72/6rb)R(r,b;z)=2ch(mz/b) (1.13)
rl0
and
lim exp(72z/6irab)Gey(r.a,b32) = Gnyyl@,b32), (1.14)

rlo

cf. Prop. IIL.12. . ' o
Sugscction I1I C concerns the trigonometric case. Our trigonometric G-function is given by
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© 2inrz
e
) s = 2 — Im2z>—a, (1.15)
Guiglras2) exp("=1 2nshnra)’ mez

and can be obtained as a limit of the elliptic G-function, viz.,

Gmg(r,a;z)=limGeu(r,a,b;z—ib/2). (1.16)
b1

In this case the elementary AAE satisfied by the G-function reads

Glatial) | ur (1.17)
G(z—ial2)
Since the rhs has zeros on the real axis, this is not a regular AAE. However, any shift
z—z+ip,p>0, yields a regular AAE, to which the (shifted) G-function is a minimal solution.
Propositions I11.14-1I.19 concern various properties of the G-function that are quite easily
obtained from the series representation (1.15) or the product representation

=]

_ H 1
G""E(r’a’Z)—,,,:l 1—exp(Rirz—(2m—1)ar)’

(1.18)

Proposition II1.20, however, involves more work. Here, we prove that a renormalized version of
Gig converges to the gamma function for r|0.

Fixing a>0, it is clear from (1.18) that Guig(7,a;z) extends to a meromorphic function of
r and z, as long as r stays in the right half plane. But one cannot solve the hyperbolic AAE,
obtained from (1.17) upon taking r—im/b,b>0, by making use of the trigonometric
G-function. By contrast, one is allowed to take b—im/r,r>0, in the hyperbolic G-function,
yielding the trigonometric function 2cosrz on the rhs of (1.8). Accordingly, the quotient of the
renormalized versions of Gyyp(1,i7/r;z) and Gg(r,132) (both of which converge to the gamma
function as r|0) is a quite nontrivial i-periodic function, cf. (3.171)-(3.173).

Just as in Subsections III A and III B, the last proposition of Subsection III C deals with two
zero step size limits; once again, a confluence of zeros and poles gives rise to branch cuts. The
subsection is concluded by detailing the relation of our trigonometric G-function to the
g-gamma function.

We continue by sketching the physical setting in which the scattering and weight functions
u(z) and w(z) of Sections IV and V, resp., arise. These functions are associated to relativistically
invariant integrable generalizationsm'11 of the nonrelativistic Calogero-Moser N-particle quantum
systems.'? The dynamics of these relativistic systems belongs to a commutative algebra generated
by N independent commuting analytic difference operators. The step size in these difference
operators is inversely proportional to the speed of light ¢, and for ¢c— the commuting difference
operators converge to commuting differential operators.

Now a factorized product of u-functions is expected to encode the asymptotics of the diago-
nalizing joint eigenfunction transform, whereas a factorized product of w-functions can be used to
transform the difference operators and eigenfunctions to an especially convenient form. In par-
ticular, in the trigonometric case the transformed eigenfunctions amount to Macdonald’s
g-Jacobi multivariable Ay, polynomials, and the product of weight functions yields the function
with respect to which the polynomials are orthogonal (cf. Ref. 2, Subsection 6.2 and references
given there). (This is why w(z) is referred to as a *‘weight function.’”)

The key point is now that «(z) and w(z) solve first order AAEs to which the theory developed
in Sections IT and IIT applies. In fact, in suitable parameter regimes u(z) can be characterized as
the unique minimal solution satisfying u#(0)=1 and |u(x)|=1 for real x, whereas a reduced
weight function w,(z) (closely related to w(z)) can be characterized in a similar way. It would
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take us too far afield to explain here how these AAEs (which are specified in Sections IV and V)
emerge from the difference operators and their eigenfunctions. Instead, we refer to Ref. 1, p. 187,
and Ref. 2, Subsection 4.3, for a derivation of the AAEs satisfied by u(z) and w(z), resp. (See
also our forthcoming paper.'®)

From the viewpoint of special function theory, the u- and w-functions are just simple com-
binations of the G-functions from Section III: Both functions are of the form
G(-+)G(---)/G(-++)G( ). The pertinent combinations, however, turn out to have quite re-
markable properties, which reflect their origins in the context of analytic difference operators and
eigenfunction transforms.

We study the functions u(z) and w(z) along similar lines, once more handling the hyperbolic,
elliptic and trigonometric cases successively. In each case we first define the relevant function in
terms of G-functions, read off some automorphy properties, and introduce some associated func-
tions and/or parameter regimes. Then we study the functions in relation to the elementary AAEs
they obey. As it happens, there is an additional elementary AAE pertaining to a parameter (es-
sentially the coupling constant in the integrable system picture), which makes it possible to
express u(z) and w(z) in terms of products of s-functions (i.e., sh(-),s(-) and sin(-), resp.) for
certain parameter values. In the hyperbolic and elliptic cases, these values are in fact dense in the
parameter space.

After obtaining these elementary representations for special parameters, we return to the
general case and derive various representations of a different character. At the end of each sub-
section we obtain a number of limits, whose existence is suggested by the formal limiting behavior
of the difference Hamiltonians. Quite a few of these limits may be physically interpreted as
nonrelativistic limits. For the scattering functions we also derive limits that may be viewed as
classical limits. The zero step size results of Sections II and III are the main tools in controlling
most of the limits—in particular the classical limits.

To conclude this introduction, we would like to point out that our results entail a great many
nontrivial identities. As a rule, these identities are not spelled out: they follow from different
representations for the same function. To be sure, quite a few of these formulas can be assembled
via elementary identities—one may even assert that this is precisely what we have done in this
paper. But this hindsight wisdom obscures what we view as the basic reason underlying most of
the identities, namely, the uniqueness of minimal solutions to first order AAEs that admit such
solutions.

To render the previous paragraph more concrete, we add an example. The sine-Gordon spe-
cialization of the u-function from Subsection IV A has been known in terms of the integral (4.30)
for almost two decades (cf. Ref. 14 and references given there). Specifically, using our conven-
tions, this S-matrix element reads

»dy sh(a— /2
j y shia )y sin2yz |, |Im2z|<d, (1.19)

u(w,a,Tr/Z;Z)=CXP(’ o y ch(my/2)shay

with d given by (4.32). (In point of fact, the integral occurred even earlier as a partition function
of the six-vertex model, cf. Ref. 15.) Nevertheless, the result (4.28), expressing (1.19) as an
elementary function for the dense set (4.27) of a-values, is new. For a<1r the resulting identity
can be verified directly by noting that the rhs of (4.28) is a minimal solution to the AAE (4.6) with
8=~, a,= and a_ = a, which moreover has value 1 and modulus 1 for z=0 and z real, resp.,

just as (1.19).
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1l. GENERAL RESULTS ON ANALYTIC DIFFERENCE EQUATIONS

A. Preliminaries

As announced in the Introduction, we are concerned with AAEs of the form

F(z+ial2)

m=®(z), a>0, 2.1

where ®(z) is a function that is meromorphic in C (briefly: meromorphic). We shall call a
function F(z) a solution to (2.1) if and only if F(z) is meromorphic in a strip |Imz|<s+a/2,s
e (0,»), and F(z) satisfies (2.1) for |Imz|<s.

The first thing to note is that any solution thus defined extends to a meromorphic function.
Indeed, one can extend F(z) upwards strip by strip via

k
F(z+ika)EHl O(z+(j—1/2)ia)-F(z), |Imz|<al2, 2.2)
2

and downwards via

i 1
F(z—ika)E]I:II -G F@ Imel<ar (23)

Clearly, the quotient of two solutions to (2.1) is an ia-periodic meromorphic function.
Whenever @(x+iy),x,y € R, converges to 1 for y— o, uniformly for x varying over arbitrary
compact subsets of R and sufficiently fast, the infinite product

1

F+(Z)E,-=Hl D2+ (- 12)ia)

(2.4)

defines a solution to (2.1). We shall refer to F', as the upward iteration solution. It is readily seen
that it is the only solution satisfying F(x+iy)—1 for y—oo. Similarly, the downward iteration
solution

F.(z)sH1 O(z—(j—11R)ia) 2.5)
i

exists provided ®(x+iy)— 1 for y— — o (uniformly on x-compacts and sufficiently fast), and is
the unique solution satisfying F(x+iy)—1 for y— —o0,
Consider, for example, the AAEs with right-hand sides

®,(z)=chz, ®y(z)=1—expliz—s), P3(z)=1—exp(iz+s), s>0. (2.6)

In the first case no iteration solution exists, whereas in the second and third cases F .. exists, but
F_ does not.

Our main interest is in AAEs (or, equivalently, meromorphic functions ®(z)) that admit
solutions with special properties in the strip [Imz|<a/2. Specifically, we shall restrict attention
from now on to meromorphic functions ®(z) that have no poles and zeros in a strip |Imz|<s.
Such functions and the associated AAEs (2.1) will be called regular. A solution to a regular AAE
will be called regular iff it has no poles and zeros in |Imz|<a/2. In view of (2.2) and (2.3) it then
actually has no poles and zeros in |Imz|<s+a/2. Clearly, the quotient of two regular solutions is
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an a-periodic nowhere vanishing entire function. Note that the three AAEs defined by (2.6) are all
regular; in the second case F . is regular, whilst in the third case F, is not (it has a pole in the set
ial2[—1,1]).

It should be noticed that a regular solution is ‘‘maximally analytic,”’” in the sense that it is free
of poles and zeros in the strip [Imz|<a/2; its poles and zeros outside the latter strip are then
determined by the AAE (2.1), and can be read off from (2.2) and (2.3), whenever the poles and
zeros of ®(z) are known. We shall be primarily concerned with a restricted type of AAE, which
admits regular solutions that are ‘‘minimal.”’ To define this notion, we observe that a regular
solution F(z) to (2.1) admits a one-valued analytic logarithm in |Imz|<s+a/2. We call F a
minimal solution iff InF(z) is polynomially bounded in |Imz|<a/2. That is, there exist ¢,d>0 and
k e Nsuchthat

IInF(z)|<c+d|z|*, VYze{|lmz|<a/2}. (2.7)
Taking z=x e Rin (2.1), we deduce
|®(x)|°<exp(2¢+2d|x|*), VxeR, é&==1. (2.8)

Thus, ®(z) must satisfy (2.8) for minimal solutions to exist.

To show that AAEs admitting minimal solutions are by no means exceptional, let g(z) be any
meromorphic function that is analytic in |Imz|<s+a/2 and polynomially bounded in
|Imz|=<a/2. Then the AAE with rhs @ (z)=exp(g(z+ia/2) — g(z—ia/2)) admits a minimal solu-
tion, viz., F(z)=exp(g(z)). It is also to be noted that the right-hand side functions $(z) of (2.1)
that admit minimal solutions form a group: If F(z) is a minimal solution to (2.1), then 1/F(z) is
a minimal solution to (2.1) with ®—1/®, and if F, ,F, are minimal solutions to AAEs (2.1) with
ths &,,®,, resp, then F(z)=F;(z)F,(z) is a minimal solution to (2.1) with
D(2)=D(2)P,(2).

A minimal solution is not only maximally analytic (since it is regular by definition), but also
has the slowest increase to ® and/or decrease to 0 for Rez— * in the strip |Imz|<a/2 that is
compatible with (2.1). This will be clear from the following theorem, which shows, moreover, that
minimal solutions have ‘‘minimal ambiguity.”

Theorem I1.1: Assume that the meromorphic function ®(z) is regular and satisfies (2.8). Let
F(z) and Fy(z) be minimal solutions to the AAE (2.1). Then there exist C € C* and ] € Z such
that

F(2)/Fy(z) = Cexp(2miz/a). 2.9)

If F\(z) and F,(z) are bounded away from 0 and ® on R, then one has 1=0 in (2.9). If ®(z) is
even, then for all minimal solutions F(z) the function F(z)F(—z) is constant. If ®(0)=1 and the
function ®(z)®(—z) equals 1, then for any minimal solution F(z) there exists k € Z such that
exp(2mkz/a)F(z) is an even minimal solution.

Proof: Since F, and F, are minimal, they are a fortiori regular. Therefore, F1(z)/F,(z) is an
ia-periodic entire function ¢(z) without zeros. Hence there exists / € Z such that the function
q0(z)=q(z)exp(—2rlz/a) has zero winding number around 0 as z goes from z; to zo+ia.

To prove that go(z) is constant, we note that it can be written exp[r(2)], with r(z) an
ia-periodic entire function. Since F, and F, are minimal, r(z) is polynomially bounded:

[r(z)|<C +Cylzl*, |Imz|<al2. (2.10)

It is not hard to see that this entails constancy of r(z). (Indeed, we can, for instance, argue as
follows. Since r(z) is ia-periodic and entire, it can be written 2,.zc,w"=s(w), where
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w=exp(27z/a), and where the series converges for w e C*. In view of the bound (2.' IQ), the
function ws(w) has limit 0 for w— 0, so it is analytic at w=0. Hence, ¢,=0 for n<O. Similarly,

since (2.10) entails s(w)/w—0 for w—>, we deduce ¢,=0 for n?O.)
We have now proved the first assertion (2.9). The second one is then clear from (2.9). Now
assume ®(z) is even and F(z) is a minimal solution. Consider the function G(z)= 1/F(—2). It

satisfies

G(z+ial2) F(—z+ial2)

- —®(—7)=D(2), 211
G(z—ia2) F(-z—ial2) 2(=2)=2(2) @11)

50 it is a solution, too. From minimality of F one easily deduces minimality of G, so (2.9) entails
there exists /| e Z such that F(z)/G(z)= Cexp(2miz/a). But the function on the lhs equals
F(z)F(—z) and hence is even. Therefore, we have =0 and the third assertion follows.

To prove the last assertion, consider the function H(z)=F(—z). It satisfies

H(z+ial2) _ F(—z—ial2)

= =1e(-z)= 2.12
H(z—ial2) F(—z+ial2) Ue(=2)=P(), (2.12)

and so it is a second minimal solution. Thus we must have F(—z)= Cexp(2wiz/a)F(z). Putting
z=0 yields C=1 and putting z=ia/2 yields (=)' ®(0)=1, so that [ is even. But then
exp(2wkz/a)F(z) with k=1/2 is an even minimal solution. O

Thus far, we have been dealing with meromorphic AAEs of the multiplicative form (2.1). To
study these in more detail and, in particular, to construct minimal solutions, it turns out to be
convenient to also consider AAEs of the additive form

flz+ial2)—f(z—ial2)=¢(z), a>0. (2.13)

Here, ¢(z) is assumed to be meromorphic in a strip |Imz|<s, s e (0,%), and we restrict attention
to functions f(z) that are meromorphic in the strip |Imz|<s+a/2 and that satisfy (2.13) for
[Imz|<s; the term ‘‘solution to (2.13)"’ will be used only for such functions. The function
&(z) and the associated AAE (2.13) will be termed regular iff ¢(z) is analytic in |Imz|<s, and
a solution f(z) to a regular AAE will be called regular iff f(z) is analytic in |Imz|<<s +a/2.

Obviously, taking logarithms of a regular AAE of the multiplicative form (2.1) leads to a
regular AAE of the additive form (2.13). Since the meromorphic function ®(z) may have zeros
and/or poles for |Imz|=s, its logarithm may have branch points for |Imz|=s. Such branch points
are irrelevant for studying the AAE (2.1), and therefore we restrict attention to the strip
|Imz|<s in the additive case.

The above-mentioned notions and results connected to (2.1) have obvious analogs for (2.13).
In particular, a regular solution f(z) to a regular AAE (2.13) will be termed minimal iff it is
polynomially bounded in |Imz|<a/2, and a necessary condition for the existence of minimal
solutions is that ¢(z) be polynomially bounded on R. Of course, in the additive case two minimal
solutions can only differ by a constant, cf. the proof of Theorem II.1.

Let us now compare the above to the older literature on first order AAEs, cf. in particular
Refs. 5-8. Here, one usually considers additive AAEs of the form

u(w+1)—u(w)=b(w). (2.14)

Of course, these are essentially equal to (2.13), as follows by making the change of variables
z=.ia(. w+ 1/2). in (2.13). But these different conventions reflect a different emphasis. Indeed, our
main interest is in the behavior of ¢(z) and associated solutions in the strip |Imz|<a/2; in

particular, we shall obtain representations for minimal solutions that hold true in this-strip, cf. the
next two subsections.
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By contrast, Norlund® singles out the “‘principal solution’” (Hauptlosung) to (2.14) by impos-
ing conditions on b(w) for Rew—o; accordingly, his principal solution can be characterized
among all other solutions by its having the slowest possible increase for Rew— . The principal
solution equals the obvious iteration solution to (2.14) whenever b(w) goes to O sufficiently fast
for Rew— 0, but it can be defined for larger classes of right-hand sides by modifying the iteration,
cf. loc. cit. Chapters 3 and 4. As we have already seen [cf. ®4(z) in (2.6)], an iteration solution
need not be regular, and so, a fortiori, it need not be minimal. Moreover, minimality concerns the
asymptotics for Inw— =, and not Rew— * o,

If one writes the hyperbolic and elliptic AAEs occurring below (for which we construct
minimal solutions) in the form (2.14), then Norlund’s conditions are violated, and no principal
solution exists. On the other hand, Norlund’s conditions allow right-hand side functions ¢(z) in
(2.13) that are not polynomially bounded on R; in that case, (2.13) does not admit minimal
solutions. For the regular trigonometric and rational AAEs occurring below, both Norlund’s and
our solution methods apply, and the principal solution is then a minimal solution. Our Fourier
series representation for the trigonometric case is however very different from the representations
for the principal solution occurring in Ref. 5.

B. Fourier transform solutions

In this subsection we obtain minimal solutions to a large class of AAEs by exploiting Fourier
transformation on L?(R). (This class contains the AAEs that occur in the hyperbolic context, cf.
the Introduction.) Our normalization reads

Y(y)= —2—1; J j;dx\lf(x)eixy (2.15)

so that
‘I’(x)=J‘j dy‘if(y)e_i"y. (2.16)

Of course, we may and will use the definition (2.15) for ¥ e L'(R), too; in this case, recall
‘if(y)—+0 for y— * o (Riemann-Lebesgue lemma). We also have occasion to use the distribu-
tional Fourier transform

© . 1 j 7z
f dye™2Vsp— = — zth(—), |tmz| <a’2, @.17)
— shay a a

where P denotes the principal value. (This formula can be verified by a straightforward contour
integration.) .
Theorem IL2: Assume ¢(z) is a function with the following properties:

$(z) is analytic in a strip |Imz|<s,s € (0,%), (2.18)
¢(x)eL'(R), (2.19)
$(y)eL'(R), (2220)
$(y)=0(»),y—0. | (221)
Then the AAE
Fe+ial2)—fz—ial2)=$(z), a>0, |Imz|<s, (2.22)
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has a unique solution f(a;z) such that

f(a;z) is analytic in the strip |Imz| <s+a/2, (2.23)
f(a;z) is bounded in the strip |Imz|<a/2, (2.24)
lim f(a;x+it)=0, te[—al2,al2]. (2.25)

Explicitly, this solution can be written as

= $(2y) —2iyz -
7)== BAEASpLL <al2, (2.26)
flaiz) f—wdy day ¢ [Imz|<a
ar as
: rd the(z—u), |Imz|<al2 2.27)
)= —(z— al2. .
f(a’&-) 21(1 e u¢(u) a(z u), mz
It satisfies the addition formula
k .
f(f;z)=2 f(a;z+ fi(k+1—2j)). (2.28)
k j=1 2k

If ¢(z) is even/odd, then f(a;z) is odd/even. Finally, let y(x) be the following primitive of
&(x),xeR:

1 x »
W(x)= 5( J-_wduqS(u)* L dugb(u)). (2.29)
Then one has
limiaf(a;z)=¢(z) (2.30)
a—0

uniformly on compact subsets of the strip |Imz|<s.

Proof: First we prove uniqueness. Thus, let d(z) be the difference of two solutions to (2.22)
with properties (2.23)-(2.25). Then d(z) is an analytic function in |Imz|<s+a/2, satisfying
d(ztial2)=d(z—ia/2) for |1mz|<s. Therefore, d(z) extends to an ia-periodic entire function.
By virtue of (2.24), d(z) is bounded in the period strip |Imz|<a/2, so d(z) is constant in view of
Liouville’s theorem. On account of (2.25) this constant equals 0, so uniqueness follows.

Next, we use (2.19) and (2.21) to infer that the function &(Zy)/ shay is bounded and satisfies

|d(2y)Ishay|=o(e™P1), y—+w. (2.31)
Thus, defining a function f(z) by the rhs of (2.26), it is clear that f(z) is analytic in |Imz|<a/2

and that f(x+it) converges to 0 for x— *o and |¢|<a/2. Moreover, using also (2.20), we infer
that the functions

#(2y)

bt(x)EJ_ dy—s-il—a—}-)—ei“ye'Zi”x, xeR, (2.32)

are continuous and vanish at =, and that we have
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limf(x*ital2)=b.(x) (2.33)
1
uniformly on R.
Now consider the auxiliary function
AlD)=f(z~ial2)+ $(z). (2.34)
Clearly, A(z) is analytic in the strip
S+={zeCImze(0,y)}, y=min(s,a), (2.35)

and A(x+ie€) converges to b_(x)+ ¢(x) as €0, uniformly for x in compact subsets of R. But
from (2.32) we have

b+(X)—b—(X)=2f:dy<;5(2y)6’2"”=¢(X), (2.36)

so this boundary value is equal to b (x). On the other hand, the function f(z +ia/2) is analytic in
the strip Imz € (—a,0) and converges uniformly on R to b (x) as Imz10. Consequently, we may
invoke Painlevé’s lemma to deduce that f(z-+ia/2) extends to an analytic function in
Imz e (—a,y), which coincides with A(z) when z € S, . Thatis, the AAE (2.22) holds true for
zeS,.

We may now exploit (2.22) for z € S to deduce that f(z) extends to an analytic function in
|Imz|<s+a/2. Since the functions f(xxial2) equal b.(x), they converge to 0 for x— *co,
Moreover, recalling the definition of f(z), we obtain

|(2’(2)’)| alyl
e
Ishay| =~

o= a jtmz|<a2, e

and in view of (2.20) and (2.21) the rhs is finite. Therefore, the rhs of (2.26) defines a solution to
(2.22) with the properties (2.23)—(2.25).

Next, we prove (2.27). Replacing the integral in (2.26) by a principal value integral, and the
functions ¢ and 65 in (2.27) and (2.26) by a Schwartz space function y and its Fourier transform
X resp., the equality of the resulting integrals is clear from (2.17) and the Plancherel relations.
Since S(R) is dense in L' (R), we deduce (2.27) from (2.26).

The function at the rhs of (2.28) obviously solves (2.22) with a replaced by a/k. Since it also
has the properties (2.23)—(2.25) that uniquely determine f(a/k;z), we obtain (2.28). Alternatively,
(2.28) follows directly from the representation (2.26) by using the elementary identity

k
ay | _ sh(ay)
jZ] eXp(-k—(k+1—'2]))~W. (2.38)

The parity assertion can be read off from both of the representations (2.26) and (2.27).

It remains to prove the last assertion. To this end we first observe that the representation (2.27)
entails that (2.30) holds true pointwise for z=x e R. Next, we use the bound (2.37) and the
assumptions (2.20) and (2.21) to infer that the function af(a;z) remains bounded by an
a-independent constant in the strip |Imz|<a/2 as a—0. By iteration of the AAE (2.22) we now
deduce that af(a;z) remains bounded in compact subsets of the strip |Imz|<s as a—0. There-
fore, the last assertion follows from Vitali’s theorem. O
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For our purposes the conditions (2.18)—(2.21) on ¢(z) are sufficiently weak. In general,
however, the conditions (2.20) and (2.21) may be difficult to check. Requiring solely (2. 18) and
(2.19), the rhs of (2.27) defines a function f(z) that is clearly analytic in the strip |Imz|<<a/2 and
that satisfies

lim f(xtit)=t-2—15fiodu¢(u), te(—al2,al2). (2.39)

x—toe

We conjecture that this function is in fact a solution to (2.22) satisfying (2.23) and (2.24).

Returning to the assumptions of the theorem, let us note that (2.21) entails that the primitive
Y(x) (2.29) vanishes at +o, Thus, writing ¢(u)=1'(u) in the representation (2.27), and inte-
grating by parts, we obtain the formula

f(a;z)=-2—?r'-§Joc du—-—i//-gf)———, |Imz| <a/2. (2.40)
la - 277
ch ;(z—u)

Comparing this representation to Eq. (14) in Chapter 4 of Norlund’s monograph,” one sees that the
solution f(a;z) and Norlund’s principal solution differ only by a constant whenever ¢(z) satisfies
not only the assumptions of Theorem II.2, but also the various restrictions that Norlund needs for
his principal solution to exist and admit the representation (14) in loc. cit. (As already mentioned,
his assumptions on ¢(z) are quite different from ours, cf. the discussion after (2.14).)

It is also of interest to observe that the assumptions (2.19)-(2.21) entail that Q)(y) is an
LZ(R)-function in the domain of the unbounded self-adjoint multiplication operator 1/sh(ay/2).
From this point of view the function f(a;x),x e R, given by (2.26), is the obvious
LZ(R):solution to (2.22) with z € R, reinterpreted as a Hilbert space equation. (Indeed, the func-
tion f(a;y)—being equal to qAS( y)2sh(ay/2)—is in the domain of multiplication by
exp(*ay/2).)

We proceed by generalizing the above key result Theorem I1.2. We shall detail this generali-
zation in the multiplicative context (2.1); the additive version will be clear from this.

Theorem IL.3: Assume ®(z) is a meromorphic function that has no poles and zeros in the
strip |Imz|<s for some s € (0,%). Setting

d )
¢1(Z)=—=(d—z) In®(z), leN, (2.41)

assume there exists k € N* such that ¢(z)= ¢,(z) satisfies (2.18)-(2.21). Then the AAE

F(z+ial2) _
Fe=iah) D(z) (2.42)

admits minimal solutions. Any minimal solution can be written as

F(z)=exp(e(z)+P(2)), (2.43)
where
= (2y) 5 (=2iyz)
e(z)Ef_wdy shay (—2iy)~* 6_2’”—120(—7212—)- . |Imz|=ar2, (2.44)
and
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k
P(z)EJZO ¢; il cos ... creC. (2.45)
The coefficients c;, ...,c; are uniquely determined, whereas ¢, is uniquely determined

mod 27/a.
Proof: Consider the AAEs

flz+ial2)—f(z—ial2)=¢/(z), 1=0,... k. (2.46)

By virtue of Theorem II.2 the function

#(2y)
shay

filz)= f dy e 23 |Imz|<alf2, (2.47)

admits an analytic continuation to |Imz|<\s+a/2 and satisfies (2.46) with /= k. Introducing

fk—l(Z)ECkZ'*’fozdek(S)’ creC, (2.48)

we infer that the rhs of the resulting equation

z+ial2

fk_1(z+ia/2)—fk..1(z~ia/2)=iack+ J' n dek(S) (2.49)

zZ—1ia

equals ¢,_,(z) for a suitable choice of ¢, [since its z-derivative equals ¢(z)]; specifically, we
may and will choose ¢, such that

ial2
iack+f ) /zdek(S)=¢k_1(O). (250)
—lia
Proceeding recursively, we obtain functions f4(z),fr~1(2), . . . ,fo(2) related by
Z
fl_l(Z)=Clz+fodel(S), l=1,..‘.,k, (2.51)
with ¢; given by
1 ial2
C1=£(¢l_1(0)—j‘ . del(S)), l=1,...,k. (2.52)
—ial2

Then fi(z),l € {0, ...k}, is analytic in |Imz|<s+ a/2 and is a minimal solution to (2.46). More-
over, from (2.51) and (2.47) one easily sees that fo(z) equals the sum of e(z) and a polynomial of
degree <k. The proof can now be completed by invoking Theorem II.1. a

In Appendix A we show (among other things) how the above results can be used to arrive at
the psi and gamma functions, and derive various salient features along the way. Here, we add two
applications exemplifying the above, yielding identities we have occasion to use later on. First,
consider the function

F(z) =cthz— gcthl;i (2.53)

It satisfies the AAE
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F(z+ial2)—F(z—ial2)=cth(z+ia/2) —cth(z—ial2)= x(2). (2.54)

Inverting (2.17) yields the distributional Fourier transforms

* o im_expt(—myl2a+ By)
i B)e"=—P: > il ), 2.55
f_xdxctha(x'*_'z,B)e ¥ h(my2a) , a>0, pe(0,7/a) (2.55)
so we have
1 (= . shy(a—m)/2
X(y)=5— W=f————— . 2.56
x(») 277_f*mdx)((x)e i Syl ae(0,2) (2.56)

Thus, x(z) satisfies the assumptions (2.18)—(2.20), but not (2.21). But ¢(z)=x'(z) does satisfy
(2.18)—(2.21), since

shy(a—m)/2

B(y)= 57
d(y)=y Shy 72 (2.57)
Therefore, we obtain a solution
© ysh(a—)y
f(Z)—4j0 dy “hayshay c0s2yz (2.58)

to the AAE (2.22). Now since F'(z) satisfies (2.22), too, and obviously has the properties (2.23)—
(2.25), we must have f(z)=F’(z), by uniqueness. Integrating the resulting identity w.r.t. z, we
obtain

thz T hTrZ—Zde sh(a—m)y . ) 259
¢ ;Ct a “Jo 4 shayshmy Smeyz. 259)
Here we have a e (0,27) in view of the restriction in (2.56). But for z € R the integral converges
for any >0, and so it readily follows that (2.59) holds for any a>0 (taking |Imz| small enough,
of course). Integrating once more now yields

In(sh)—1 (a h?Tz)— ©dy sh(a— )y . )
n(s n| —sh—|= " shayshﬂ-y( cos2yz), a>0. (2.60)
Second, consider the function
h(z)= Scth
z)=—c P (2.61)
It satisfies the AAE
%4
h(z+iaf2)=h(z=ial2)=ith—. (2.62)
Therefore, h"(z) satisfies the AAE
flz+ial2) '/2*””1 e 2 =
z+ia f(z—ial2)= e ch’— =¢(z). (2.63)
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Now one readily verifies
2
d(y)= m >0, .60
so ¢(z) satisfies the assumptions of Theorem I1.2. The resulting solution
4a (=  y?
=)= 'w'f o P ShIgy oSz (2.65)

must then be equal to 4" (), since ' (z) clearly has the properties (2.23)~(2.25). Integrating twice
w.r.t. Z we now obtain

Tz (1-cos2yz)
= 2 -~ 77
Trzctha ata Jo dy Wy a>0. (2.66)

The identities (2.66) and (2.60) can be combined to evaluate integrals occurring below. First,
they entail that for a € (0,7) one has

am Trshz 2

amsh(a— )y a
In

2
- th— + d -
a— met—-Ta= f y((a 7)yshayshmy shzay)(l cos2yz).

ash—
a
(2.67)

Taking z—o¢ and using the Riemann-Lebesgue lemma we obtain the integral

am | ’7T+ J‘md amsh(a—m)y a? 2 68
a—m a7 Y (a— m)yshayshmry shzay' (2.68)

Adding the elementary integral

f °°d @’ : ) (2.69)
0 ) shzay 57_2 e ’
yields
=dy (sh(a—m a—m)
= f y(shla—my ) (2.70)
a shayshmy amy
and combining this with (2.60) we get
©dy [sh(a—m)y (a—ﬂ))
A 2yz— , a>0. .71
ln( sh ) In(shz)= J (WC 0s2yz amy

Just as in the above examples, AAEs with a-dependent right-hand side functions will be
encountered later on. The last theorem of this subsection concerns the limit a—0 in this setting.
It is convenient to use the assumptions of Theorem IL.2 as a starting point; corresponding results
in the slightly more general context of Theorem IL.3 can then be obtained by k-fold integration.

Specifically, we consider an AAE of the form

f(z+ial2)—f(z—ial2)=$u(z), a>0, (2.72)
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where ¢,(z) satisfies the assumptions (2.18)~(2.21) for any a e (0,a0]. (Of course, the choice of
a is irrelevant for the limit a—0.) We allow dependence of the maximal number s,, € (0,] in
(2.18) on a; in particular, one may have s,,—0 as a—0. However, we do assume that for any
a e (0,a,] the function ¢,(z) is analytic in the open right half plane

#y={z e C|Rez>0}. (2.73)
Moreover, we assume that for any compact K C. %, there exists Cx>0 with
|pa(z) —ax(z)|<Cga®, V(a,z)e(0,a0]XK, (2.74)

where x(z) is analytic in .%,.

Now let f,(z) be the unique solution to (2.72) given by Theorem I1.2 (with ¢(z)— ¢,(z), of
course). Thus, f,(z) is analytic in the strip [Imz|<a/2+s,(a) and in .%,. We are now in the
position to state the next result.

Theorem I1.4: In addition to the above assumptions, let

Ifa(2)|<Csp. VY(a.z)e(0aglX{zeC|Reze[5,M],|Imz|<al2}, (2.75)
for any 6>0 and M > 8, and let the pointwise limit

limf,(2)=f(z) (2.76)

al0

exist for any 7 € (0,%). Then f,(z) converges uniformly on compact subsets of 72y to a function
f(2) that is analytic in F#y. Moreover, one has

f()=—ix(2),ze %y (2.77)

with x(z) defined by (2.74).
Proof: Upward iteration of the AAE (2.72) yields

L
fa(z+iLa)=ﬂ,(z)+E1 ba(z+(—12)ia), |Imz|<al2. (2.78)
7

Choosing
L=N[a"'], Reze[8M], 0<é<M, (2.79)

in this equation, the arguments of ¢, occurring on the rhs stay in a closed rectangle
K(N,6,M)C Ay as al0. Thus we may invoke the bounds (2.74) and (2.75) to conclude that
fa(z) remains bounded for Rez € [8,M],Imz e [O,N], as a|0. Similarly, iterating downwards L
times and requiring (2.79), we deduce that f,(z) remains bounded for Rez € [8,M],Imz
e[—N,0].

Combining uniform boundedness of f,(z) on compacts of 72, with the pointwise convergence
assumption (2.76), it follows from Vitali’s theorem that f,(z) converges uniformly on compacts of
- to a function f(z) that is analytic in .%8. Therefore, it remains to prove (2.77).

To this end, we use (2.72) to write

®a(2)

ia

, 1 (ztiar2
st | awin =i, e, (.50

Clearly, the second term on the rhs can be majorized by
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SUPy e {2+ iblb e [~ arzar}lfa(W) = fa(2)]. (2.81)

Now f,(z) converges to f'(z) uniformly on compacts K C .7, and the lhs of (2.80) converges to
—ix(z) uniformly on K [due to (2.74)], so one easily deduces (2.77). O

We conclude this subsection with some comments on the assumptions of the theorem just
obtained. In later applications, the assumptions on ¢,(z) are easily verified. Moreover, fixing z
€ J%, the function ¢,(z) is actually real-analytic in a for a e R. (Note this property is stronger
than (2.74).) Possibly, these properties already entail the hypotheses (2.75) and (2.76), but we
believe this is not true in general. (Observe that the function f,(z) is not likely to be analytic at
a=0forz e #,.)

The above convergence result should also be compared to the last assertion of Theorem IL.2.
Taking ¢,(z)=a¢(z), one sees that this assertion amounts to a simple special case of Theorem
II.4—except that the analyticity region is different, and that the constant left undetermined in
f(z2)=—iy(z) by (2.77) is fixed in terms of x(z)= ¢(z). In this connection we point out that the
choice of the region .7, (2.73) in which ¢,(z) is assumed to remain analytic as a—0 is deter-
mined more by convenience of exposition than by necessity. Indeed, as will be exemplified by
Prop. II1.7 below, the maximal region with this property can be larger, and correspondingly one
can obtain convergence in this larger region.

C. Fourier series solutions

We proceed by obtaining results that will enable us to solve AAEs occurring in the trigono-
metric and elliptic contexts. Correspondingly, we will be dealing with meromorphic functions that
are periodic in the real direction. It is convenient to parametrize this period by 7/r,r € (0,%). For
V(x) e L*([ — m/2r,w/2r],dx) we employ Fourier coefficients

” r [mi2r .
v,= -—f dx¥(x)e*™™*, nel, (2.82)
TJ —ml2r
so that
T(x)= E \’I‘,ne—2inrx (2.83)
nel

with the series converging in the L2-topology.

As we have seen in the previous subsection, the AAE (2.22) naturally leads to hyperbolic
functions when ¢ satisfies (2.18)—(2.21), cf. (2.26) and (2.27). In much the same way, periodicity
of ¢(z) leads to the emergence of elliptic functions. It is convenient to collect some features of the
functions that arise before stating the analog of Theorem II.2. First, we recall the product repre-
sentations of the Weierstrass o-function (cf., e.g., Ref. 16): We have, taking r,a>0,

oo

. . k . _
T ia 5 sinrz— (1—p*exp(2irz))(z— —2)
) / (2.84)
with
p=exp(—2ar) (2.85)
or, alternatively,
[=-] ,* _
m ia\ L2 shrz/a oy (1—pexp(2mz/a))(z——2) (2.86)
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with
F=exp(—2mar). (2.87)
Here, 7 and 7’ are connected by Legendre’s relation
7' =inar/m—ir. (2.88)
The function

T ia

) )exp( nztrlm) (2.89)

s(r,a;z)= O'(Z,

plays a key role in the sequel. In view of (2.84) s is odd and =/r-antiperiodic, and satisfies

sinrz

lims(r,a;z)= (uniformly on compacts). (2.90)

a—®

Moreover, using (2.86) and (2.88) one sees that s solves the AAE

S(z+ia/2)
- 91
Se=ial) - —exp(—2irz) (2.91)
and obeys
shmz/a
lims(r,a;z)= s (uniformly on compacts). (2.92)

r—0

Note that s(r,a;z) is not a regular solution to the regular AAE (2.91): It has zeros for Imz=0.

=<}

H (1—-prexp(2irz))(z——z)= exp

* —nra

n=1nshnra

cos2nrz), [Imz|<a. (2.93)

Combining this with (2.84) and (2.89) one obtains

(r.a: )_sinrz i e " ) 5
s(r,a;z)= exp 2 nshnra( cos2nrz) |, |Imz|<a. (2.94)
From this representation we deduce

s'(r,a;z) 5 E e "¢

a0 =rcotrz+ r2 g —sin2nrz, |Imz| <a. (2.95)
Using the elementary Fourier series

cotr(z+ial2)=—i—2i >, e "% Imz>— g/, (2.96)

n=1

we finally obtain
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—2inrz

K(r.a;z)=ir+ir >,
nezx Shnra

, |Imz|<al2,

where we have introduced

d
K(r,a;z)= —-lns(r a;z+ial2).

Note that (2.92) entails

T
limK(r,a;z)= —th~—

r—0

uniformly on compact subsets of |Imz|<a/2.
Theorem IL.5: Assume ¢(z) is a Junction with the following properties:

@(z) is analytic in a strip |Imz|<s,s e (0,),
¢(z) has period m/r,
$o=0.
Then the AAE (2.22) has a unique solution f(a;z) such that
f(a;z) is analytic in the strip |Imz|<s+a/2,
f(a;z) has period /r,
fo=0.

Explicitly, this solution can be written as

—2inrz

faz)—-z ¢

<al2
2 T “shnra |mz|<af2,

or as

1 w/2r
fla;z)==—— dug(u)K(r,a;z—u), |Imz|<ar2.
2i 2

—mlir

1089

(2.97)

(2.98)

(2.99)

(2.100)
(2.101)

(2.102)

(2.103)
(2.104)

(2.105)

(2.106)

(2.107)

It obeys the addition formula (2.28). If ¢(z) is even/odd, then f(a;z) is odd/even. Finally, the
limit relation (2.30) holds true uniformly on compact subsets of the strip |Imz|<s, with (x) the

primitive of ¢(x) that satisfies o=

Proof: In order to prove uniqueness, we argue as in the proof of Theorem I1.2 to concl-ude tt_lat
the difference d(z) of two solutions satisfying (2.103)—(2.105) extends to an ia-periodic entire
function. Since d(z) has period /r, too, we deduce that d(z) equals a constant d. Now we have

0= 30= md/r by (2.105), and so uniqueness follows.

Next, we define a function f(z) by the rhs of (2.106). Clearly, f(z) is analytic in

|Imz|<a/2 and has properties (2.104) and (2.105). Moreover, the functions
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b (x)ElE is"—e—i—n-rie"“"”‘, xeR, (2.108)
= 2, g shnra

are smooth and 7/r-periodic, and (2.33) holds true uniformly on R. (Note that the Fourier coef-
ficients ¢, form a fast decreasing sequence, since é(x) is real-analytic and r/r-periodic.) Since
we also have

bo(x)=b_(x)= 2 ¢ue” 3" =g(x), (2.109)

neZ*

the reasoning in the proof of Theorem II.2 can be repeated, showing that f(z) solves (2.22) and
has property (2.103).

The representation (2.107) follows from (2.106) and the Fourier series (2.97) by using the
Plancherel relations and (2.102). The addition formula (2.28) follows in the same way as in the
proof of Theorem I1.2. The parity claim is obvious from either (2.106) or (2.107). Using (2.106)
with z € R, it follows from routine arguments that

(27 e—2inrx
n

—2inr

limiaf(a;x)= > =y(x), xeR, (2.110)

a—0 neZ*

and that ¢(x) is a primitive of ¢(x) with J/O=O. The uniform convergence assertion then follows
in the same way as before from Vitali’s theorem. O

Recalling the limit (2.99), one sees that the representation (2.107) turns into (2.27) for
r—0. More precisely, this holds true for functions ¢(r;u) with a suitable dependence on r.
Clearly, one needs some restrictions on this dependence to ensure uniform convergence for z in
compacts of the strip |Imz|<a/2 (say), but we shall not pursue this. (For an explicit example, see
Prop. IIL.12 in Subsection III B.)

We continue with an analog of Theorem IL.3.

Theorem IL.6: With (2.18)-(2.21) replaced by (2.100)—(2.102) and (2.44) replaced by

(=23 it (=2inr)~* e‘ﬂnrug(_mm)j Imz|<al2, (2111
3 2, Shnra PR . |[Imz|<ar2,  (2.111)

the assertions of Theorem I1.3 hold true.
Proof: With Theorem II.2 replaced by Theorem IL.5, and (2.47) by

1

bn
fle)=5 X e 2% |Img<ar2, (2.112)

nelZ* shnra

thg reasoning in the proof of Theorem I1.3 applies verbatim; note that boundedness of fir(z) in the
strip |Imz|<a/2 entails polynomial boundedness of fi(z) in this strip. (]

We conclude this subsection with a result pertaining to AAEs (2.72), adapting the assumptions
of the previous subsection to the periodic context. Thus, for any a e (0,a,] the right-hand side
®4(2) is assumed to satisfy (2.100)—(2.102) and to be analytic in the open period strip

Z,={zeC|Rez e (0,7/r)}. (2.113)
fur;:ermore, the bound (2.74) is assumed to be valid for any compact KC .72, , with x(z) analytic
in 2,.

Denoting by f,(z) the unique solution to (2.72) given by Th
. eorem IL.5, w
state the analog of Theorem I1.4. £ Y e are prepared to
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Theorem IL.7: Assume in addition to the above that (2.75) holds true forany 6 € (0,7/r) and

M e (0, 7/r), and that the pointwise limit (2.76) exists for any z e (0,7/r). Then the assertions of
Theorem 11.4 hold true, with 72 replaced by 7, .

Proof: Taking M <m/r in (2.79) and replacing .7, by .%,, the proof of Theorem IL.4 applies
verbatim. O

The comments after Theorem I1.4 apply with obvious changes to Theorem I1.7, so we shall
not spell them out again.

Ill. GENERALIZED GAMMA FUNCTIONS

A. The hyperbolic case

Consider the integral

fmdy ( sin2yz z

0 —)7 2sha ysha_y - aa_y =g(a..a-:2), @1

where we take a5 € (0,%),6=+,—, until further notice. Obviously, this integral converges abso-
lutely provided z belongs to the strip

S={zeC

[Imz|<(a;+a_)/2}, (3.2)
and it defines a function g that is analytic in S. In this subsection we study the function

G(z)=exp(ig(2)) (3.3)

in considerable detail. (Here and in the sequel, we suppress the dependence on a . ,a_ whenever
this causes no confusion.) We shall collect our results in propositions that concern various features
of G(z).

Proposition III.1 (defining AAEs): The function G(z) is analytic and has no zeros in the
strip S. It extends to a meromorphic function that is a minimal solution to the three AAEs

G(z+ias?)

- Tom = — 4
Glz=ia)2) 2ch(mzla_g), oO6=+,—, (3.4)
and

G(z+i(ay—a-)2) sh(mz/a_)

= . 35
G(z—ila,—a_)2) sh(mz/a,) (33)

It is the unique minimal solution satisfying
G(0)=1, |G(x)|]=1, xeR. (3.6)

Proof- The first assertion is clear from (3.1)—(3.3). Taking = + in (3.4) and denoting the rhs
by ®(z), the assumptions of Theorem IL.3 are satisfied, witha=a,, s=a_/2 and k=3. Indeed,
we have

d 3 d 2
¢(Z)E(d—z) ln¢(z)=£(a—z—) th(mz/a-) 3.7)

so that (cf. (217))
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P —iy2
¢()= 2sh(a_y/2)"

From this the properties (2.18)~(2.21) are evident.

(3.8)

As a consequence the AAE at hand admits minimal solutions; these can be written as (2.43)-

(2.44) with k=3 and

1(= dy 2 . 2.2
=—=| ———(e "= (1—-2iyz—2y“z"))
e(z) 4f_xysha+ysha_y(e ( Y ¥

,F’ dy (sinZyz )
- o sha,ysha_y\ 2y ¢

To determine ¢ ,c,,c3 we follow the proof of Theorem IL.3. Thus, we start from

f3(z)= —4ij dyy*cos(2yz)/sha . ysha_y,
0

cf. (2.47). Then we get

J:dsf3(s)=—2if dyysin(2yz)/sha,ysha_y
0 0

so that

ia 2 = a\2
f dsf3(s)=4f dyylsha_y= -
)

—iay (]

From (2.50) we then have c¢;=0, and so
fa2)= ~2if dyysin(2yz)/sha,ysha_y.
0
Now f,(z) is odd, so (2.52) yields ¢,=0. Hence,

f1(2)=if0 dy(cos(2yz)—1)/sha ysha_y,

cf. (2.51), so that

fzd _.fwd sin2yz
. sfi(s)=i . y %y —z|/sha,ysha_y=e(z),

cf. (3.9). Now we have

1 (=
*e(*ia )= :'Z_J’ dy(

ay 1 )
0 .

sha ;ysha_y a ysha_y

Also, recalling (A33) and (A34), we may write
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3 1 1
In2= d —_
n fo y(——za_y ysha_y). (3.17)

Using (2.52) once more, we obtain

* 1
c1=(ia;) ' (In2—e(ia 2)+e(—ia.l2 ='f ( -
1 +)7( (iaf2)+e(—ia /2))=i Od}’ sha . ysha_y a+a_y2- (3.18)
Combining (2.51) with (3.15) now yields
folz)=cizte(z)=iglas,a_;7), (3.19)

cf. (3.1). In view of (3.3), this entails that G(z) solves (3.4) with §= +. Since the function G is
manifestly symmetric in a, ,a_, it solves (3.4) with 6= —, too.
To prove that G also satisfies the AAE (3.5), we observe that we may write

G(z+i(ar—a_)2) Glz—ia_l2+ia,/2) G(z—ia,/2—ia_/2)
G(z—i(ay—a_)2) G(z—ia_l2—ia,2) G(z—ia,2+ia_I2)’

(3.20)

From (3.4) we now deduce that (3.5) holds true. Finally, the uniqueness assertion is clear from
Theorem II.1. O

We point out that the identity (2.71) can also be obtained from the AAE (3.5). Similarly, the
proposition entails the identity

dey( 1 cos2yz
(Y

Tz
)=ln(20h———), a>0, |Imz|<a/2. (3.21)
ay shay a

Indeed, this identity amounts to the function ig [as given by (3.1)] satisfying the additive versions
of the AAEs (3.4). The integral (3.21) can also be derived directly from (A33), (A34) and (2.17).
In this way one can obtain a shorter proof of (3.4). The above proof, however, shows how the
function G(z) emerges from the general theory presented in Subsection II B, when one takes one
of the AAEs (3.4) as a starting point.

Proposition IIL.2 (automorphy properties): One has

G(—2)=1/G(z), (3.22)
G(a-,a,;2)=G(as,a-;2), (3.23)
G(\a, Na_;\z)=G(as,a-;z), Ae(0,). (3.24)

For any M,N € N* one has the multiplication formula

M N . .
a, a- iay L la-
— .= 2t —(M+1-2/)+ = (N+1-2k)|. (3.25
G(M,N,z) ,-LI”EIG(“““"”zM(M 1-2j)+ 55 ( )] (3.29)

Proof: All of these properties readily follow from the integral representation (3.1)—(3.3) and
meromorphy of G. Indeed, the first three are immediate from (3.1). Taking first N=1 in (3.25),
and using (3.1) and the identity (2.38) to rewrite the rhs, one obtains the desired result for

G(a,/M,a_ ;z); the general case then follows by using (3.23). O
Note that when one takes M =N in the formula (3.25), one can use (3.24) to write its lhs as
G(a+ »a— 9NZ)

Proposition IIL.3 (zeros, poles, residues): The zeros and poles of G(z) are given by
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Z,;“lsi(a+(k+1/2)+a_(l+1/2)), k,le N (zeros), (3.26)
y=—24, kJeN (poles). (3.27)

| e g el - +
For a given (ky,ly) € N*, the multiplicities of the pole kgl and zero 2y, are equal to the number
of distinct pairs (k,l) € N? such that z,f,=z ,fo,o ; in particular, for a s la_ & all poles and zeros

are simple. The pole at zy is simple and has residue
i
r00=5-7;(a+a_)1/2. (3.28)

More generally, if the quantity

k !
L= H sin('trmaﬂL/a_)l_[l sin(mna_/ay) (3.29)
m=1 n=

is non-zero, then the pole at zy; is simple and has residue
ra= (=) (= 172) rgg 1y (3.30)

Conversely, if z;; is a simple pole, then one has ty; # 0.
Proof: In view of (3.23), we may assume a,<a_. Iterating the AAE (3.4) with 5=+ we
obtain

G(z—iMa.)=Py(z2)G(z), MeN*, (3.31)
where
M - -1
Pu=|I1 2ch—(z=iar(m=12))| . (3.32)
m=1 -

Now the poles of P, (z) occur at (and only at)
Zm=iay(m—12)—ia_(I+1/2), m=1,... .M, lelZ (3.33)
Introducing the strip
S_={zeCImzea_[—1/2,1/2)}, (3.34)

and fixing m € {1, ... ,M}, there exists a unique /=0 such that z,,; € S_. Since G(z) is analytic
and non-zero in S_, it now follows from (3.31) that G has M and only M poles (counting
multiplicity) in the shifted strip S_—iMa. ; these occur at z;;,k=0,...,M—1, with [ e N
uniquely determined by k and M.

Now for a given pair (kq,ly) € N* one can find some M >k, such that zk—olo e S_—iMyay
(since the shifted strips cover the lower half plane). Also, for any pair (k,I) e N? such that
241 =2y, One must have k<M, (since z;; € S_—iMoa, entails a,(k+1/2)+a_l<a  M).
Consequently, the multiplicity of the pole of PMO(z) at z=zk—0,0+iM0a+ equals the number of

pairs satisfying z;, =z ; -

The upshot is that the poles of G(a ,a_ ;z) in the lower half plane are given by (3.27) and
have the asserted multiplicity. Since G is non-zero in S_ and P, has no zeros at all, it follows

from (3.31) that G is non-zero in the lower half plane. Recalling (3.22), the first two assertions
easily follow.
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To prove the third one, we use (3.4) with 6=+ to get

-1
G(z—i(a, +a-)/2)=( —2ish-:—f) Gz+i(a,—a_)). (3.35)

From this we read off

f00=12a_7; G(i(ar—a_)2). (3.36)

Similarly, using (3.4) with §= — we obtain

ia, ] .
r00=-2—7; G(z(a_——a+)/2). (337)

Combining these two expressions for rq, with (3.22), we deduce
Glilar—a_)2)=(a,la_)"?, (3.38)

and so (3.28) follows. (Note that (3.1) and (3.3) entail that G is positive for z € i(a.+a_)
X(—1/2,1/2). Note also that (3.38) can be derived from (3.5).)
Finally, we exploit both AAEs (3.4) to write

k 1 -1
- 7T ar
G(z+zi)= (=) U TT 2ish—(z—ima,)[] 2ish—(z—ina_)| G(z+zg).
m=1 a_ n=1 a.

(3.39)

Taking z—0 in this identity, the remaining assertions follow. O
In principle, the residue at Zk-OIO can still be determined by using (3.30) even when Zk_o o is not

a simple pole. Indeed, in that case one must have a,/a_ e Q; choosing sequences
asp—as,6=+,—, forn—o suchthata, ,/a_ ,¢Q, the residue equals the limit of the sum of
the residues at the simple poles that coalesce at z; , . There is presumably an explicit formula for

the limit, but we have not pursued this.

It is evident from (3.3) and the above that g(z) extends from an analytic function in § to a
multi-valued function with logarithmic branch points at (3.26) and (3.27). It is convenient to
specialize to the branch obtained by restricting z to the cut plane C(a,+a_), where

C(d)=C\{=i[d/2,»)}, d>0. (3.40)
This branch will be again denoted g(z). Asymptotic properties for Rez— %o are most easily
obtained for the special case a, =a_=a; the general case can then be handled by a comparison

argument, cf. Prop. 1I1.4 below.
We start from the identity

1
g(a,a;z)=-—7; b(mzla), (3.41)
where we have introduced

b(w)Efowdttctht, weC(2m). (3.42)

J. Math. Phys., Vol. 38, No. 2, February 1997



1096 S. N. M. Ruijsenaars: Difference equations and integrable systems

(To see that this holds true, use (3.1) on the lhs and take z-derivatives; this yield§ a linear
combination of the identities (2.66 ) and (2.69).) Next, we write chr=shz+ e~ ! to obtain

b(w)=w22+cs—b,(w), Rew>0, (3.43)
where
—Fd e Rews0 (3.44)
bi(w)= y tsht’ ew>0, .
= te”t F(0) & 1 @
= —_—— = — 3.45
€+ fo shr | 2i ,,;?:IW 12’ (3.45)

cf. (A8) and (A10). From this representation we read off the bounds

2 2
b(w)=7+%+0(exp((e—2)w)), Rew— oo, (3.46)
b'(w)=w+O(exp((e—2)w)), Rew—oo. (3.47)

Here, € is a fixed positive number and the bounds hold true uniformly for Imw varying over
compact subsets of R.

Of course, these bounds entail bounds on g(a,a;z) via (3.41). More generally, they can be
exploited to derive bounds on g(a, ,a- ;z), as will now be detailed.

Proposition I11.4 (asymptotics): Fixing €>0 and setting

a,=max(a,.a.) (3.48)
one has
2
*o(a,,a_iz)=— ™ a_+_+_z_z___ +0(exp(=(e—2m/a,)z)), Rez—zxw
8= Ty a2l a, pL= m2))s =
(3.49)
! 7TZ
+g (a+,a_;z)=-a p +O0(exp(*(e—27/a,)z)), Rez— *w, (3.50)
+ -—

where the bounds are uniform for Imz in R-compacts.

Proof: Since g is odd in z, it suffices to verify the Rez—o asymptotics. Now when
a.=a_, the formulas (3.49) and (3.50) are immediate from (3.41), and (3.46) and (3.47), resp.
Since g is symmetric in a. ,a_, it remains to consider the case a. <a_ .

To this end we rewrite (3.1) as

aja_gla,,a_;z)=a*g(a,a;z)+d(z), (3.51)
where we have introduced
a?,,-l—az_ 12
a= 5 , (3.52)
d(Z)EL dyI(y)sin2yz, (3.53)
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with

2

I(y)= 1 a.a- a
4 T2y sha+ysha_y— shzay ) (3.54)

Here, we take z in the strip S (3.2), so that the integral converges (note @, +a_<2a). Now we
have

1(}’)=C(a+ ’a—-)y+0(y3)$ y—>0’ (355)

so I(y) is analytic in the strip |Imy|<a/a_ . Hence, fixingz € Sandr € (0,7/a_), we may shift
contours to obtain

2id(z)=e'2”f dul(u+ir)e®, (3.56)

From this we deduce that d(z) and d'(z) are O(e~%"%) for Rez—o0, uniformly for z in a closed
substrip of S.

Combining these bounds with (3.51) and the Rez— asymptotics of g(a,a;z), we deduce

that (3.49) and (3.50) hold true uniformly for z in the strip |Imz|<a., . Finally, we exploit the
AAEs

T
glzxia,)=g(z)Filn 20h;—(ziia+/2) (3.57)

to infer that the bounds hold uniformly for |Imz|<2a, ; by iteration, the proposition now follows.
O
Thus far, we have taken a , and a _ positive. However, fixing z € R, it is already obvious from
(3.1) that G(a, ,a_ ;z) extends to a function that is analytic and non-zero for @, ,a_ in the (open)
right half plane. Note this is consistent with the analytic continuation of (3.26) and (3.27): The
imaginary part of the rhs is non-zero for a ,a_ in the right half plane.
More generally, we shall now prove that G can be continued to a function that is meromorphic
ina, ,a_ and z, provided the ratio variable

p=a_la, (3.58)

stays away from the negative real axis. To this end we consider the auxiliary function

A(p,)\)EHOF((j+1/2)p,)\), peC™, \eC, (3.59)
=

where C~ denotes the cut plane (A15). In view of (B22) and (B19) this is a well-defined mero-
morphic function in C™XC. Moreover, from (A40) we readily deduce

o dt
A(p,)\)=exp(J'0 W(Z)\—sh()\t)cth(tﬁ)) , p>0, |Re\|<p. (3.60)

Now from (3.1) and (3.3) we have
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» dt ) 2iz
G(z+za+/2)G(z—za+/2)=exp( .fo m(sh(ztz/a+)cth(t/2)— Z

.det 2z 4z
! o t \aysh(a_tR2a,) a-t

2iz
=A(p,—iz/a)exp| ——In2 |, (3.61)
a,

~————
~———

X exp

where we used (A33) and (A34). Next, we introduce the new variable
=-—izla, (3.62)
and combine (3.61) and the AAE (3.4) to deduce
Gla,,a_z+ia /2)*=A(p,\)exp(2\In2)-2cos(m\/p). (3.63)

We are now prepared for the following proposition.

Proposition II1.5 (meromorphic continuation): The function G(a , ,a_ ;z) admits analytic
continuation to a function that is meromorphic in a. ,a_ and z, provided p=a_la, stays in
C™. Fixing a ,a_ with Imp # 0, one obtains a meromorphic function whose zeros and poles are
simple and located at (3.26) and (3.27), resp.

Proof: The function

B(p,\)=A(p,\)cos(mN\/p) (3.64)

is meromorphic in C™XC, so in view of (3.63) we need only show that for p & R all of its zeros
and poles are double and located at

A=k+(I+1/12)p, k,JeN (zeros), (3.65)
A=—k=1—-(+112)p, k,leN (poles). (3.66)

Recalling the definitions (2.59) and (A39), we obtain the representation

©

B T((j+1/2)p+N) T(1+(j+1/2)p+\)
B(p’)‘)_cos(")‘/p)jgo T(G+12)p—N) T(1+(+12)p=—n) P

(—4Xn(j+1/2)p)
(3.67)

from which these features can be read off. a
Of course, the proposition just proved entails that various formulas involving G can be
analytically continued. We mention specifically (3.4), (3.5), (3.22)—(3.25) [note one can take A
e C* in (3.24)], (3.28)~(3.30), and the special values
Glilag—a_gI2)=(asla_5"? G(xiag2)=2%"2 6=+,—. (3.68)

(These values easily follow from (3.1)-(3.5).)
We proceed by detailing the relation to the gamma function. To this end we introduce

H(p;z)=G(1,p;pz+il2)exp(izln(2mp)—2 " 'In(2m)), peC, zeC (3.69)

This renormalized version of G(a ,a_ ;z) is such that the two AAEs (3.4) translate into the AAE
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H(p;z+il2) _ishmpg
H(P;Z—‘i/Z) - Tp (370)
and functional equation
chmz
H(p;z)H(p;—z)= (3.71)

(Use (3.22) to check (3.71).) We shall now show that the p—0 limit of H(p;z) exists and equals
LT (iz+1/2). Accordingly, (3.70) and (3.71) turn into the AAE and functional equation satisfied
by the gamma function.

Proposition II1.6 (relation to gamma function): Taking p & (0,®), one has

lim H(p;z)=UT (iz+1/2) (3.72)
pl0

uniformly for z in C-compacts. More generally, fix € € (0,©),¢ € (0,7), and an arbitrary compact
KCC. Then there exists 6= 6(€,¢,K) € (0,°) such that

|H(p:2)T(iz+12)=1|<e, zeK, |Argp|<m—g,|ple(0,5]. (3.73)

Proof: We begin by proving (3.72). Since the function 1/I'(iz+1/2) is entire, we need only
show

lim P(p;z)=1 (uniformly on compacts), (3.74)
pl0

P(p;z)=H(p;z)['(iz+172). (3.75)

Now from Prop. II1.3 we see that the poles of I"(iz+ 1/2) are matched by zeros of H(p;z), so that
P(p;z) has no poles and zeros in the strip

S,={ze(||Imz| <172+ 1/p}. (3.76)

We continue by deriving an integral representation for P(p;z) that holds true in §,. To this end
we first take |Imz|<1/2. Then we may use (3.3) and (3.1) to write

— 3.77
4shyshpy y 2py G177

=dy eliPyzg =y — = 2iRvzgy g 1
G(l,p;pz+i/2)=exp(J' —;—( )
0

Also, from (A37) we obtain

F(iz+1/2) =y ) 1 e 2evi(gr—eY)
M —|ize™ P — st e | | 378
(2m)' exp( fo 1ee 2py T T ashyshpy (378)

Finally, combining (A37) (with z=1/2) and the integral (A29), we write the remaining factor in
(3.69) as

=dy [iz ize”?  _
exp(izln(27rp))=exp( jo —y—-(;—-——a;—ﬂze 2”)). (3.79)

Putting the pieces together, we obtain
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i [*dy e?
2Jo y shyshpy

P(p:z)=exp( (sin(2pyz)——2zshpy)). (3.80)

Clearly, this representation can be analytically continued to the strip S, as announcefl above.
Now we fix a compact KC C and note KCS, for p small enough. Rewriting the integral in (3.80)

as

), c=1/p, (3.81)

clo dy y ZShy shey

lfx e “¥(sin(2yz) —2zshy) ( cy
it becomes evident that it converges to 0 for c— o uniformly on K. Consequently, we have now
proved that (3.72) holds true uniformly on compacts.

To prove the stronger assertion (3.73), we observe that for z € K and ¢>0 large enough, the
contour in (3.81) may be rotated to e’¥y,y e [0,%), with |x|<(m— ¢)/2, cf. the proof of Theorem
B.1. The resulting integral can now be estimated in an obvious way for ¢ € C with |c| large enough
and |Arg(e'*c)|<(m— ¢)/2, and then (3.73) easily follows.

The function P(p;z) (3.75) is of some interest in itself: It is the unique minimal solution to the
AAE

F(z+i/2) _ shmpz

F(z—il2) mpz (3.82)

[cf. (3.70)] that satisfies F(0)=1,|F(x)|=1x e R. Note that the representation (3.80) can be
understood from Theorem II.3.

We conclude this subsection by deriving two more zero step size limits, now involving the
function G(,a;-) for a—0. (The choice a, = 7 is notationally convenient; the scaling relation
(3.24) can be used for other a,-values.) In fact, we shall phrase the limits in terms of the branch
g(2)= —ilnG(z) defined in the cut plane C(7+a), cf. the paragraph containing (3.40). Introduc-
ing the functions

do(Npiz)=g(ma;z+ika)—g(ma;z+ipa), zeC(m+a), \uelR, (3.83)

D,(z)=ag(ma;z), zel(m+a), (3.84)

we are prepared for the following proposition.
Proposition ITL7 (zero step size limits): One has

lilmda()\,,u;z)=—-i()\—,u)ln(Zchz), N ueR, (3.85)
all
K Z
limD ,(z)=— fo dwln(2chw), (3.86)
all

uniformly on compact subsets of the cut plane C(m) (3.40). Here, In is real-valued for z and w
real, resp., and the integration path in (3.86) belongs to C(1r).
Proof: From the AAE (3.4) with as=a,a-s=m, we deduce that (3.85) need only be proved

foF T [-— 1/2,1/2]. Taking from now ona e (0,7/4] (say), we fix \ and w in this interval and
2 in the strip |Imz|< /2. Then we may use (3.1) to write

(N pie) = _l.fxff_}’(()\“/»b) _sha(N—u)y cos(2yz+ia(N+u))

0 y 7Ty Shay Sh7Ty k) (387)
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“dy [ ay sin2yz z|
Da = ___.__f_
@ J‘0 ¥y (Shav 2shmry 7r)' (3.88)

From straightforward estimates one sees that these representations entail the limits

. dy cos2v*’

limd, (N, p;2)=—i(A— j ( '“)

iooda Mm32)==i(A—p) sy | (3.89)
. =dy (sin2yz z
limD =z
i (2)= (ZSh'nv w), (3.90)

and boundedness for (a,z) e (0,7/4]X K, with K a compact subset of |Imz|< 7/2.

Invoking now Vitali’s theorem and recalling the identity (3.21), it follows that (3.85) and
(3.86) hold true uniformly on compacts in |Imz|< /2. Next, we exploit Theorem IL.4 to obtain
uniform convergence on compacts in the nght half plane (2.73). To this end we need only observe
that the AAEs with step size a obeyed by ﬁ d, and (9 D, satisfy all of the assumptions of Theorem
114, cf. the proof of Prop. IIL.1. Slmllarly, we infer uniform convergence on compacts of the left
half plane. Since any compact in C(7r) can be written as a union of three compacts in the strip
|Imz|<7/2 and in the left and right half planes, the proposition now follows. O

We point out that (3.85) amounts to

G(m,a;z+ika) \
:ﬁG(w,a;zHM) =exp((A—u)In(2¢chz)), A\,peR, (391
uniformly on compacts in C(7r). Observe that the rhs is not meromorphic, unless A\ ~ u e Z. The

emergence of branch cuts can be understood from the coalescence of zeros and poles taking place
for a—0, cf. Prop. IIL.3.

B. The elliptic case

In this subsection we are concerned with a function that is a minimal solution to three AAEs
generalizing the hyperbolic AAEs (3.4) and (3.5). We study this function along the same lines as
in Subsection III A. Our starting point is the infinite series

o

sin2nrz

S ras a2, 3.92
22nshnra+shnra~ gras.a-:z) (3.92)

where we take at first 7,a5 € (0,0),8=+,~. Clearly, this series converges absolutely and uni-
formly for z in an arbitrary compact of the strip S (3.2), so it defines a function g that is analytic
in S. As before, it is convenient to suppress the dependence on the parameters whenever this
causes no confusion. With this convention, our goal is to study the function G(z) (3.3).

To this end we introduce the ‘‘right-hand side function™

®

R(r,a;z)=—2ire [ (1—e )2 es(r,asz+ial2). (3.93)
=1

Using the definition (2.89) of s and the product representation (2.84) of the o-function, one easily
verifies that R can be rewritten

oo

R(r,a;z)=kl=11 (1—exp(2irz—(2k—1)ar))(z——2), (3.94)
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where the infinite product converges absolutely and uniformly on compacts. From this one readily
obtains the representation

x©
cos2nrz

R(r,a;z)=exp( - Z

1 nshnra)’ |Imz| <a/2. (3.95)

(Use the power series for In(1—x) to verify this; cf. alsg (2.93).)
In the sequel it is convenient to employ the abbreviations

gs=exp(—asr), (3.96)
cs=—2irqV H(1 —g% (3.97)
sf(z)=s(r,a;:2), (3.98)
R{2)=R(r.as;z)=cse sz +ias2), (3.99)

where 6= +,—. We are now prepared for the following proposition.
Proposition II1.8 (defining AAEs): With (3.4) replaced by

G(z+ia5/2)_ L
Ca—tan) R o=*.— (3.100)
and (3.5) by
G(z+i(ay—a_)l2) 1—¢q 2_")2 s_(2)
G(z—ila,—a_)2) };I;‘[ ( g% S+(Z) (3.101)

the assertions of Prop. lII.1 hold true.
Proof: In view of (3.99) and (3.95), Theorem II.5 may be invoked to solve the additive form
of (3.100). Specifically, we may take

eZznrz

pl2)=— 2,

nog+ 2nshnra_g’ (3.102)

s=a_g2 and a=as. The solution given by (2.106) is then equal to ig(r,a, ,a_ ;z) [cf. (3.92)],
and so (3.100) follows.

Next, we use (3.20) and the AAEs (3.100) to conclude that (3.101) amounts to the identity

© g%\2
R_(z—ia_/2)
-1;[ ( 2") "Ro(z—ia.2) (3.103)
This identity can be deduced from (3.96)-(3.99), so the proposition follows. 0O

Proposition II1.9 (automorphy properties): The function G is periodic with primitive period
/r. It obeys the multiplication formula (3.25) and the period doubling formula

G(2r,ay,a_;2)=G(r,ay,a_;2)G(r,ay ,a_;z2—ml2r). (3.104)

Moreover, it satisfies (3.22), (3.23), the scaling relation

G(\"'r\as Na_;\2)=G(r.a..a-3z), Ae(0), (3.105)
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and the duplication formula

G(r,a, ,a_ ;2z)=l H B G(r,ay,a_;z—i(la,+ma_)/4)

m=+,
XG(r,ay,a_;z—i(lay+ma_)/4—w/2r). (3.106)

Proof: These features follow from the series representation (3.92) in the same way as in the
hyperbolic case. (Combine (3.25), (3.104) and (3.105) to check (3.106).) a
Proposition II1.10 (zeros, poles, residues): The zeros and poles of G(z) are given by

Lu=jmir+z, jelZ, kleN (zeros), (3.107)

Zu="2, Jjel kleN (poles), (3.108)

with z ,:", defined by (3.26). The multiplicities of the poles Zi—kolo and zeros Z;‘olo ,J € Z,are equal to

the number of distinct pairs (k,1) € N* such that z;,=z ,:FO 1,- The polesatzjy,j € Z, are simple and
have residue

-1

roo=1i 2rnI=I1 (1-¢*(1—-¢*" | . (3.109)

Whenever

k !
o= Hl is-(ima+)H1 isy(ina_) (3.110)
m= n=

is non-zero, the poles at 2, ,j € Z, are simple and have residue

1 k+1 ) ) ®
rkl__:(_)kl(_i_r_) q(_l +l)(k+l/2)qsl-c +k)(l~l'1/2)].—:[1 (1 “qz—n)_Zk(l“qin)_ﬂ'roo/ekr
n=

(3.111)

Conversely, if zj;, is a simple pole, then e}, 0.
Proof: We proceed along the same lines as in the proof of Prop. IIL.3. Here, (3.31) holds true
with (3.32) replaced by

M -1
PM(Z)E( 1;[l R_(z—iat+(m—1/2)) (3.112)

and then the poles of P,(z) are located at jm/r+z,,, with j € Z and z,,; given by (3.33). By
periodicity we may restrict attention to poles and zeros on the imaginary axis. In view of (3.22) the
first two assertions then follow just as in the hyperbolic case.

Turning to the third one, we now get

G(z—i(ay+a_)2)=(c-explir(z— ia_12)]s_(2))"'G(z+i(ar—a-)2)  (3.113)

so that [cf. (3.96) and (3.97)]

r°°='zir',,l=11 (1=g*™)"2G(i(ay—a_)I2). (3.114)
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Using symmetry in a4 ,a-, We deduce

o

1—¢*
Glila,—a-)2)=11 U-q-)

- (3.115)
n=1 (1—‘11

and so (3.109) follows. (Note that (3.115) can also be derived from (3.101).)
Finally, from the AAEs (3.100) we calculate

c’f_c’+exp(%‘—[(FH)(MJr 1)+k]+ Tz-i[(k2+k)(zz+ 1)+1])

Glz+z)=(—)"

k 1 -1
-exp(irz[k+1+2kl]) 11 s.(z—ima;,)]_—-[l s+(z-ina_)) -G (z+z9)-
m=1 n=

(3.116)

Using (3.96) and ( 3.97), the remaining assertions readily follow from this. Od

At the elliptic level the choice a . =a_ does not appear to yield extra information, as com-
pared to the general case. But since G is 7/r-periodic, there is no analog of Prop. II1.4, and so we
do not need additional information on this special case.

Next, we turn to an analog of Prop. IIL5.

Proposition II1.11 (meromorphic continuation): The function G admits the representation

* l_qirn*lqin-le—Zirz
Glra..a_:2)= [] T I ame > ds=eXp(—agr). (3.117)
mn=1 I_Q+ q_ e

It can be analytically continued to a function that is meromorphic in r,a .. ,a_ and z, provided
a,r and a_r stay in the right half plane. Fixing r,a ,a_ with Re(a . r) and Re(a_r) positive,
one obtains a meromorphic function whose zeros and poles are located at (3.107) and (3.108),
resp.

Proof: It suffices to prove (3.117), since the remaining assertions are clear from this formula.
To this end we observe that the numerator infinite product is the downward iteration solution to
both of the AAEs

F(z+iag2)
T _p) . =4 —
F(Z“lag/Z) R (a—ﬁ’z)’ é +’ ’ (3118)
with
R(“)(a;Z)EII[ (l_e—(2k-—1)are—-21rz)' (3119)
=1

Similarly, the denominator infinite product is the upward iteration solution to

F(z+iag?)
7 _p(+) . = —
Fla—iay) & (a-siz), o=+,-, (3.120)
with
R™(a;2)=R"(a;~7); (3.121)

cf. (2.1)-(2.5). But we have
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R (as32)R T ag:z)=Ry(z), (3.122)

cf. (3.94), so the ths G of (3.117) solves the AAE (3.100). Since both solutions G and G are
w/r-periodici_have no zeros and poles in the strip |Imz|<a 42, and satisfy G(0)=5(0)= 1, we
deduce G=G. O

We continue by detailing the relation of the elliptic G-function to the hyperbolic
G-function. This relation is the first instance of a general type of limiting transition between
meromorphic functions that will reappear several times. Therefore, it is convenient to introduce a
term referring to the type of limit involved.

To this end, assume f,(z) is a family of meromorphic functions parametrized by p e CV. We
shall say that f,,(z) converges mero-uniformly to a meromorphic function f(z) as p—p, when-
ever one has f,(z)—f(z) uniformly on compacts not containing poles of f(z), and
1/fp(z)——>1/f(z) uniformly on compacts not containing zeros of f(z). (Equwalently, viewing
meromorphic functions as holomorphic functions from C to the Riemann sphere P!, one has

fp—f mero- -uniformly as p—py iff the convergence is P!-uniform on arbitrary C-compacts.)
Defining the renormalized function

e
Grnlr,ar,a-;2)=G(r,ay.a- ;z)exp(—é—i—r—a—fa—) (3.123)
+d

we are now prepared for the next proposition.
Proposition IT1.12 (relation to hyperbolic G-function): Fixing a,,a_>0, one has

lim Gren(r,a+ ,a-32)=G(ay,a-;z2), (3.124)
rl0

where the limit is mero-uniform.
Proof: Writing G o, = eXp(igyen), WE obtain

sin2nrz Z

- , zeS$; 3.125
8ren(r @4 ,a-32)= ”HEI nr\2shnra,shnra_ nra.a_, ) ( )

cf. (3.92). Comparing to (3.1), a routine dominated convergence argument now yields

lim gen(r,ays,a-3z)=g(as,a-3z), z€S, (3.126)
rl0

uniformly on §S-compacts.
Next, we note that G, satisfies the AAE

G(z+ia.l2)
oy K- (3.127)
G(z—ia.l2) R- enl2)
with
a2 .
R—,ren(Z)EeXP(6m_)R-(Z). (3.128)

In view of (3.126) this entails that for [Imz|<a_/2 we have

G(a+ 24— Z+la+/2) 2 hﬂ-z (3129)

R_ ch
hfg ol )= G, aa—iasl) .
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where we used (3.4). Recalling (3.99) and the limit (2.92), we deduce

? 21
i ic_)=—. (3.130)
lrlllg exp(Gm_)(zc ) a_

Using then (2.92) once more, one sees that (3.129) holds uniformly on C-compacts. Therefore, one

may exploit the AAE (3.127) and uniform convergence of G, to G on S-compacts to obtain

uniform convergence on C-compacts that do not contain the poles z;,,j,k € N, of G. Moreover,

(3.126) entails uniform convergence of 1/G, to 1/G on S-compacts, so one can also use (3.127)

and (3.129) to infer 1/G ;— 1/G uniformly on compacts not containing the zeros z;;c. O
As a corollary of the proof we obtain the limit

; le 1 —e~2ran)? >0 (3.131)
H - — r ‘=—. a ; .
l:fg rexp 6ra/ =1 ( ¢ a

cf. (3.130) and (3.97). Equivalently, this can be written

1 e e 1 a
lim{ >, ~\ g~ | "l | =, a>0. (3.132)
rlo n=1

The last proposition of this subsection is the analog of Prop. II1.7 in the previous one. To state
it, we introduce the cut plane

C(r,d)y=Q\{xi[d2,»)+km/rlkeZ}, r,d>0, (3.133)

and define a branch g(r,A,a;z) of —ilnG in C(r,A+a) via (3.93) for |Imz|<(A +a)/2. Then we
set

d,(r, AN p;z)=g(r,A,a;z+ika)—g(r,A,a;z+ipa), zeC(r,A+a), \peR,

(3.134)
D,(r,A;z)=ag(r,A,a;z), zel(r,A+a) (3.135)
(This should be compared to (3.83) and (3.84).)
Proposition II1.13 (zero step size limits): One has
lim d,(r,A,\, p3z)=—i(A— p)InR(r,A;z), N ueR, (3.136)
all

Z
lim Da(r,A;z)=—I dwlnR(r,A:w), (3.137)

al0 0

uniformly on compact subsets of the cut plane C(r,A) (3.133). Here, 1n is real-valued for z and
w real, resp., and the integration path in (3.137) belongs to C(r,A).

Proof: This follows in the same way as Prop. II.7, with (3.93), (the logarithm of) (3.95) and
Theorem I1.7 playing the role of (3.1), (3.21) and Theorem IL.4, resp. (Since the limits are
/r-periodic in the strip |Imz|<A/2, one need only handle compacts in %8, (2.113).) O

In terms of G, (3.136) reads

G(r,A,a;z+i\a)

}:E?G(r,A,a,Z"‘llLa)=exp(()\—M)InR(r,A,Z))’ K?#ERa (3'138)
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uniformly on compacts in C(r,A). Once more, the branch cuts arise from coalescence of zeros and
poles, cf. Prop. 1IL.10.

C. The trigonometric case

The trigonometric case is most easily understood by viewing it as a limiting case of the elliptic
case. In view of (2.90), this should involve sending one of a ,a_ to . We shall fix a,=aq
e (0,°) and let a_=A go to «. To get finite limits, we clearly should shift z in an
A-dependent way. We take z—z—iA/2, and thus wind up with

G(r,a;2)=lim G(r,a,A;z2—iA/2). (3.139)

A—x

From the product representation (3.117) it is immediate that this limit exists mero-uniformly,
yielding

x

G(ra;a)=I[ (1=g?m~te?)™! g=emor (3.140)

m=

For Imz>—a/2 we can also evaluate the limit (3.139) by using (3.92); this yields the series
representation

* 2inrz

e
G(r,a;z)=exp(2 2nshnra)’ Imz>—al2. (3.141)

n=1

We continue by studying the trigonometric G-function just defined.
Proposition II1.14 (defining AAE): The function G(r,a;z) is the upward iteration solution
to the AAE

G(z+ial2) .
o =it 1
G(z—ial2) I=e (3.142)

Proof: This is clear from the product representation (3.140) [recall (2.1)-(2.4)]. (]
Notice that the AAE (3.142) is not regular. However, a shift z—z+ia/2 (say) gives rise to a
regular AAE. Indeed, the function

d(2)=In(1—exp(2ir(z+ial2)))=— 21 n”lgre?inr (3.143)

satisfies the assumptions of Theorem 114, and G(r,a;z+ia/2) is a minimal solution .to the asso-
ciated multiplicative AAE. [Compare the logarithm of (3.141) with (2.106) to see this.] Observe
also that (3.142) agrees with the A—oo limit of the elliptic AAE

G(r,a,A;z—iA2+ial2) 3
G(r,a,A;z—iARR—ial2)

—2ir]] (1—e™ 202 eirs(r,Asz), (3.144)
n=1

cf. (3.100), (3.96)~(3.99), (3.139) and (2.90). . S o
Proposition IIL15 (automorphy properties): The function G is periodic with primitive
period m/r. It obeys the multiplication formula
a V1] 2% r1-2)) (3.145)
G( vt =]l;[1 G\r ,a.2 M ( J) | .

raM,Z
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the period doubling formula

G(2r,a;z)=G(r,a;z)G(r,a;z— m/2r), (3.146)
the scaling relation
GO 'rna;hz)=G(r,a;z), Ae(0), (3.147)
and the duplication formula
G(r,a;2z)= 1 G(r,a;z—icald)G(r,a;z—iocald—m/2r). (3.148)
-

Proof: These properties follow from the series representation (3.141) in the same way as in
the two previous cases. . O

Proposition II1.16 (zeros, poles, residues): The function G(z) has no zeros and simple poles
given by

zjkEj'n'/r—ia(k—i—l/Z), jeZ, keN (poles). (3.149)

The residues at the poles zjq,j € Z, are given by
] -1 l
r0=i(2rn (1 —qZ")) =5-Glial2), (3.150)
n=1 r

and the residues at the remaining poles 2. ,j € L,k € N*, are given by

k
rk=r0/mf=[l (1—g~2™). (3.151)

Proof: The first assertion is immediate from (3.140). The residues (3.150) follow either from
(3.109) by taking a limit, or directly from (3.140). Using

k
G(ztzol) = 1__[l (1=g7"e*"™) " G(z+2¢0)> (3.152)

the residues at the remaining poles can now be obtained, yielding (3.151). O
Proposition II1.17 (asymptotics): The function G satisfies the bound

G(r,a;z)=1+0(exp(—2rImz)), Imz—co, (3.153)

uniformly forRez € R.
Proof: This estimate readily follows from the series representation (3.141). O
Proposition II1.18 (meromorphic continuation): The function G can be analytically con-
tinued to a function that is meromorphic in r,a and z, provided ar stays in the right half plane.
Fixing r,a with Re(ar)>0, one obtains a meromorphic function without zeros and with simple
poles located at (3.149).
Proof: This can be read off from the product representation (3.140). O
The propositions derived thus far have elliptic and/or hyperbolic analogs. In the previous two

cases, however, the G-function satisfies G(z)G(—z)=1, a relation that does not hold in the
trigonometric case. Instead, we have the following result.

Proposition I11.19 (functional equation): The trigonometric G-function satisfies
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G(r,a;2)G(r,a;~z)=R(r,a;z) ", (3.154)

where the rhs is given by (3.93).

Proof: This is obvious from the series representations (3.141) and (3.95). O

We point out that this functional equation may be seen as a footprint left by the second AAE
satisfied by the elliptic G-function: Taking a—a . , the ths can be written R, (z)~", so (3.154)
can be deduced from (3.100) with =~ and the limit (3.139).

Next, we introduce the function

T(rir)= G(r,1;0) rz? 1
(r,z)—mexp —2—+zzln(2r)—§1m-r , Rer>0. (3.155)

This renormalized version of G(r,a;z) satisfies the AAE

T(r;z+i/2) __isinrz
T(riz—il2) r

(3.156)

and functional equation

s(r,l;z+1i/2)

. . — = -1 2 [
T(r;2)T(r;—z)=7" exp(rz"+irz) s(r,1;il2)

(3.157)
Taking r |0, the right-hand sides of (3.156) and (3.157) obviously converge to iz and 7~ 'chmrz
[recall (2.92)], resp., in accordance with the next proposition.

Proposition II1.20 (relation to gamma function): One has

imT(r;z)= UL (iz+ 1/2) (3.158)
rl0

uniformly for z in C-compacts.
Proof: We begin by noting that it suffices to show that (3.158) holds uniformly on compacts
of the lower half plane (LHP). (Indeed, from (3.156) we have

i I
T(riz+ik)= ;sinr(z+i(k—— 1/2))- - - ;sinr(z+i/2)T(r;Z), (3.159)

so if (3.158) holds uniformly on LHP-compacts, then the rhs of (3.159) converges in the same
sense to

1 1
{7 — vooliz— = . 3160
(iz=k+172)- - (2= 12wy = Tz i) + 172) (3.160)
Hence, (3.158) follows for compacts of Imz=<k). To this end we use the formula
z w
e(z)=e(0)+ze’(0)+J dwfo dse"(s) (3.161)
0
to rewrite the logarithms of T(r;z) and 1/T"(iz+1/2). This yields
1 z w
T(r;z)=exp( - —2-1n77+izK(r)+ fo dw fo dsh(r;s)) (3.162)

with
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e nre —2inrz (3 63)
o )= _— Imz<1/2, .1
h(r:z) 2r,,21 shnr o imz

x

= S 3.164
K(r) 1n(2r)+n=I o ( )
[cf.‘(3.155) and (3.141)] and
: L 1~+fzd fwd h()) (3.165)
_—= —=Inw— = sh(s .
Flizrip) o0 “alm—izd|z|+ | 4w |,
with
. ye—2iyz 66)
7)= <1/2, 3.1
h(z) 2]0 dy O Imz (
cf. (A37), (A12), and (A33), (A34).
Comparing (3.163) and (3.166), we deduce
lim h(r;z)=h(z) (3.167)

ri0

uniformly on LHP-compacts. Comparing then (3.162) with (3.165), we see that it remains to show

lim K(r)=—¢(3). (3.168)
rl0

To prove this, we use the AAEs (3.156) and (A24) to write

T(r;—1i) T'(3/2) r

7(r;0) T(1/2) 2sh(ri2)" (3.169)
Due to (3.162) and (3.165), the lhs can be rewritten
1 =i w
exp(K(r)+z/f 3 +J dwf ds[h(r;s)—h(s)]), (3.170)
0 0

and since the integral converges to 0 for | 0 we now obtain (3.168). Therefore, the proof of the

proposition is complete. O
Comparing the AAEs (3.156) and (3.70), we deduce that the quotient

Q(r;2)=T(r;z)/H(irlm;z), Rer>0, (3.171)

of the trigonometric and hyperbolic functions is i-periodic. Moreover, comparing poles and zeros
of T and H, we deduce that Q is entire in z and has simple zeros at

z=—kalr+i(l+1/2), keN*, [eZ. (3.172)

Furthermore, recalling Prop. I11.6, we infer

lim Q(r;z)=1 (uniformly on compacts). (3.173)
rlo

J. Math. Phys., Vol. 38, No. 2, February 1997



8. N. M. Ruijsenaars: Difference equations and integrable systems 1111

Our llast Proposition concerns two zero step size limits that may be tied in with (3.136) and
(3.137) via (3.139). We set

Co(r.d)=Q{-i[dR,%)+kn/rlkeZ}, r>0,d=0, (3.174)
and define a branch g(r,a;z) of —ilnG in C_(r,a) by requiring

* 2inrz

g(r.a;z)=—i Imz>—a/2, (3.175)

= 2nshnra’
cf. (3.141). Now we put
do(r.N,p;z)=g(r,a;z+ika)—g(r.a;z+ipa), zeC_(r,a), NueR,  (3.176)

D (riz)=ag(r,a;z), zeC_(r,a). (3.177)

(Compare this to (3.133)-(3.135).)
Proposition IIL.21 (zero step size limits): One has

lim d,(r,\,p;2)= —i(A—p)In(1—e*%), \,ueR, (3.178)
al0
z .
lim D ,(r;z)=— J’ dwln(1—e?"™), (3.179)
all i

uniformly on compact subsets of the cut plane C_(r,0) (3.174). Here, In is real valued for
z,w € i(0,%0), and the integration path in (3.179) belongs to C_(r,0).

Proof: From (3.175) it readily follows that the proposition is valid when the cut plane
C_(r,0) is replaced by its upper half plane subset. Applying Theorem II.7 to the functions
fa(2)=d (z+1i) and f,(z2)=D,(z+i) (which satisfy the hypotheses of that theorem for ay small
enough), one obtains validity for all of the cut plane. O

Translated to G, the limit (3.178) becomes

| G(r,a;z+ika) N In(1 — g2 N R (3.180)
aﬁIgG(r,a;zH,ua)"eXP(( w)n(1—e™™)), \,ueR, )

uniformly on compact subsets of the cut plane C_(r,0). Just as in the previous two cases [cf.
(3.91) and (3.138)], this formula is evident from the defining AAE when A — x is an integer. For
\— u & Z, the branch cuts in the lower half plane arise from the coalescence of poles and zeros
that can be read off from (3.149).

We conclude this subsection by detailing the relation of the trigonometric G-function
G(r,a;z) to the g-gamma function I' 7(z). Recall the latter is given by (cf, e.g., Ref. 4, p. 16)

oy (=)

F{z)=(1-9)! an;ll =70 (3.181)

Comparing this to the product formula (3.140) for G, we see that when we take

q‘quse"’zar (3182)

we may write G as
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=]

G(rasaz)=TH—iz+ 1/2)(1—5_)~i2—1/2];[1 (1-gm~L (3.183)

From this we readily obtain [recall (3.155)]

T 172) 1 red (1—e—2'))
T(r;z)= ————exp| — zln7+ ———izln . (3.184)
T ) T 2T 2 2r

Using these relations, some of the above results can be translated in terms f)f I';, recovering
results that have been obtained by several authors, cf. Ref. 4 and references given there.

IV. SCATTERING FUNCTIONS

A. The hyperbolic case

We present our results on the hyperbolic scattering function u(ay ,a_ ,b;z) in a form that
anticipates our account of the elliptic case. First of all, we define u by
G(z—ib+ilar.+a_)2)G(z+ib—i(a.+ta_)/2)

Gz—ilar—a_)2)G(z+i(ay—a_)2) ?

where G(z)=G(a, .a_ ;z) is the hyperbolic G-function from Subsection III A. In (4.1) and in
many later formulas, the dependence on a . and a _ is suppressed. This should cause no confusion,
since u—just like G—satisfies

u(ay.a-;z)=ula-,a4;:z), (4.2)
cf. (3.23). Similarly, the automorphy properties (3.22) and (3.24) yield
u(—z)=1/u(z), (4.3)
u(hay Na_ \b;\z)=u(a,,a_,b;z), Me(0,»). (4.4)
By virtue of Prop. IIL.5 the u-function is meromorphic in a, ,a_,b and z, provided the

quotient a /a_ stays away from the negative real axis. As a rule, however, we restrict our
considerations to parameters in the set

H={(as,a_,b)la,,a_>0beR}. (4.5)
This choice corresponds to physical applications; in particular, it guarantees |u(x)|=1 for real
X.

Next, we observe that the AAEs (3.4) entail that u solves the AAEs

u(ztiag2) s_oz—ib+iag2)s_sz+ib—iay2)

u(z—iag?) s_slztiag2)s_s(z—iag?2) ’ 4.6
where we have introduced
sh(mz/ag)
85(2)———-——77/% , O=+,—. 4.7

(This definition mimicks the elliptic definition (3.98), cf. (2.92).) Fixing 8§ € {+,—}, the AAE
(4.6) is regular unless the parameters (a . ,a_,b) belong to the planes
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as=2na_s, nelN*, (4.8)

or

b=ka_gstaz?2, kel 4.9)

These planes separate the region .# (4.5) into infinitely many connected components, one of
which reads

Rs={(a,.,a_,b)e #Hlase(02a_s),be(as.a_s+as?). (4.10)

Choosing parameters in .72, the u-function may now be characterized as the unique minimal
solution to the AAE (4.6) that satisfies

u(0)=1, Ju(x)|=1, xeR. (4.11)

Indeed, the pole/zero properties of the G-function (cf. Prop. II1.3) entail that u (4.1) is a regular
solution to (4.6) if and only if (a . ,a_ ,b) € .#25. Moreover, for all (a, ,a_,b) € # one has

u(z)=exp i;—i—%(b—a),)(b—a_) +O(exp(=(e—2mla,)z)), Rez—xw, (4.12)

uniformly for Im z in R-compacts, cf. Prop. III.4. Therefore, u is indeed a minimal solution to
(4.6) for parameters in .785 (4.10). From Theorem IL1 and (4.11) one now easily deduces the
above uniqueness assertion.

It should be remarked at this point that the AAE (4.6) does admit minimal solutions whenever
the parameters do not belong to the planes (4.8) and (4.9). Indeed, this readily follows from
Section II. More concretely, a minimal solution can be constructed by multiplying u(z) by finitely
many factors of the form s5(z—p)/s s(z+ p) that cancel the poles and zeros of u(z) in the strip
|Imz| <a4/2. (Observe that u(z) has no poles and zeros for |Imz|=a 42 unless (4.8) or (4.9) holds
true.)

Since the rhs of (4.6) is a_gsperiodic in b, the quotient u(b+a_gs;z)/u(b;z) is
ia s-periodic in z. Specifically, one obtains from (4.1) and (3.4)

ulb+a_s;z) ss(z+ib)

=— . 4.13
u(bi2) Saz—1b) (4.13)
Therefore, iteration yields (taking k. ,k_ € Z)
u(b+kia,+k-a_z) kol (ztilksllks) (b—ag2)+iasljs— 1/2))
u(b;z) s+, - js=1 (z——2) '
(4.14)
Next, we introduce the parameter subset
@E{(a+ ,a_,b)E.%lb=k+a++k_a_,k+ ,k-EZ} (4.15)

of # (4.5). Since the numbers k,a, +k_a_ .k, ,k_ e Z, are dense in R whenever a, /a_ «(),
the subset & is dense in .#. Now from (4.1) we read off

u(ay,a_,ay3z)=u(ay,a_,a_;z)=1 (4.16)

and also, using (3.4),
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u(ay,a_0;z)=—1 (4.17)
Hence, (4.14) yields

ksl ¢ (z+iags(je—0(ks)))

ulay,a- kear+k_a- ;Z)=c"+"‘-5=];I,_ AL = (4.18)
with
0, j<0,
)= 4.19
6(j) 1, >0, (4.19)
and
cr=(=)F, kel (4.20)

In words, the u-function is an elementary function for parameters in the dense subset & of . (Of
course, whenever a_/a, is a rational number, there exist infinitely many distinct pairs (k,!)
e 72 for which the number ka. +la_ is the same; this yields different representations for the
same function.)

We continue by noting the symmetry property

u(b;z)=u(ay+a_—b;z), (4.21)
which can be read off from (4.1). Combining this with (4.14) (taking k, ,k_=1), we deduce

u(—biz) s.(z+ib) s_(z+ib)
u(b;z)  so(z—ib) s_(z—ib)’

(4.22)

Since this parameter transformation leaves & (4.15) invariant, it does not give rise to additional
elementary representations for u.
Next, we derive analogs of the multiplication formula (3.25). First, we use (4.1) to get

M G(z—ib+i(a 2) +i(a_2) +i(as IM) (1))
M H

a
u(——,a_bz =i G(z—i(asf2)+i(a-2) +i(ay /M) (M—j))

G(z+ib—i(a/2)—i(a_2)+i(a, /M) (M~ ]))

G(zt+i(ay/2) —i(a-2) +i(arIM)(1—j)) (4.23)
with G(z)=G(a, ,a_ ;z). Rearranging and using (4.1) once more, we deduce
a, M1 a.
u -M—,a_,b;z =u(a+,a_,b;z)l£ll u a+,a_,b;z+ik—M-
G(z+ik(a. /M) —ib+i(a_2) —i(a /2))
G(zt+ik(a, /M) —ib+i(a_2) +i(a_/2))
G(z+ik(as /M) —i(a_2) +i(a,/2))
(4.24)

G(ztik(ar /M) —i(a_/2)—i(a/2)) "

This can be simplified by using the AAE (3.4), which yields
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s_(z+ija,IM)

1

a M-1
+

u| 57-a- b =(=)M"]

( Z) ( ) k=0u

-1
a.
,a_,biz+ik— - . 4.
G+-a . lkM),-:l s_(z—ib+ija,IM) (4.25)
Equivalently, we may also rearrange (4.23) to get
M-1 M~1
a, _ a, s_(ztib—ija,.IM)
ul—,a_,b;z|=(-)""! ( ,_,;—‘-—) . (@
(M a z) (=) ,EO ula,,a_,b;z lkM ,131 s (e=ija /i) (4.26)

Substituting a_—a_ /N in the formulas (4.25) and (4.26), and using first (4.2) and then one of
these formulas again, one obtains four representations for u(a,/M,a_/N,b;z) in terms of
u(ay,a_,b;z) and sh-quotients.

The choices b=a,/2 or b=a_/2 yield the sine-Gordon soliton—soliton S-matrix. Taking
b=a./2, it follows from (4.18) that there exists a dense set of a_-choices yielding an elementary
u. Specifically, choosing a_=a ., (1+2/)/2] withj € N,I e N*, we have b=a.2=la_—ja, .
Thus, setting

o
aj=3;(1+2j), jeN, l e N¥, (4.27)

we deduce from (4.18)

shmra;; Yz+imm) lfIl sh(z+ika;)
(

(z——2) k=t

i
u(m ey, m2z)= 1'=[1 (sG). (4.28)

7——2)

We proceed by obtaining and studying integral representations. In view of (3.1) and (3.3), we
may rewrite u (4.1) as

u(z)=exp(E(z)) (4.29)
with
=dy sh(a,—b)ysh(a-—b)y .
=2i| — sin2yz. 430
E(z)=2i 0oy sha ,ysha_y neyz (4:30)

Clearly, the integral converges absolutely provided

|Imz|<d(a4.a-,b)/2, 4.31)
where
d(ay.a- by=a,+a_—|a,—b|—|a_—b| (4.32)
In particular, one has
das,a_,b)y>asz=(ays,a_,b)e s, (4.33)

cf. (4.10). This bound amounts to the regularity of u(z) in Fs, vievyed as a solution to (4.6): u
has no poles and zeros in the strip |Imz| <a /2 when (a+ .a- b) e s,
More generally, setting

g’E{(a+,a_,b)e%be(o,a++a_)}, (4.34)
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the representation (4.29) makes sense and holds true in a strip around the real z-axis if and only if
the parameters belong to %". Indeed, one easily verifies

d(a+ 9a—’b)>0<=>(a+ sa—7b)eg4‘ (435)

Observe that .72, U.7_ is a proper subset of &,

Letting |Imz|<a 42 and choosing parameters in .%25, we can derive a second integral repre-
sentation from Theorems II.3 and I1.2, as applied to the AAE (4.6). From (4.29) and (4.30) we read
off that the minimum integer k in Theorem I1.3 equals 1. Setting

s_s(z—ib+iag2)s _s(z+tib—iag2)
s_slz+iag)s_fz—iag2)

¢5(Z)§1n( (4.36)

with In real for z real, we now deduce

1 (= T
E(z)=—-.——[ dxds(x)th—(z—x), (ay,a_,b)eRs, |Imz|<ayg?2. (4.37)
2iag) = as

(Indeed, both lhs and rhs vanish for z=0, and equality of derivatives is easily derived via (2.27)
with a—a s and ¢(u)— ¢p5(u).) Notice that the integral on the rhs converges absolutely for real
z and any (ay,a_,b) € F, even so, (4.37) is in general false for parameters not belonging to
Fs. Note also that for parameters in .72, N.7_ one gets two different representations without
manifest a . +—a_ symmetry.

Using the identity (A42) we can rewrite (4.37) as

_sh(2mz/ay) (= ds(x)dx
B iag o ch(2mz/ag)+ch(2mxlas)’

E(z)

(ay.a_,b)eZs, |Imz|<ay2.
(4.38)

Combining this with (A43), (A44) and the Plancherel relation for the cosine transform, one
recovers the symmetric representation (4.30).

We proceed by deriving yet another asymmetric representation for the u-function, in terms of
an infinite product of gamma functions. (Somewhat surprisingly, this representation is not an easy
consequence of (3.63), (3.64) and (3.67).) First, we introduce

vi(p,g,8)=L(s+1+1/p)(=s+g+1l/p)T(s+Up)T(=s+1—g+1/p)/(s——s),
(4.39)

where | € N,p e C7,g,s e C. Fixing /,g,s and taking p>0 and small enough, we may invoke
(A45) to deduce

©dy sh(g—1)ysh2syshgy

5)= 4] 22 =2ylp | 4.40
Yi(p.8.5) eXP( 0y shy e (4.40)

This representation is well defined and valid for
IRe(p~')>|Reg| +|Res|. (4.41)

By virtue of (B18) it can be rewritten
Yz(p,g,s)=exp(4f e *Pfy(g—1,25,8,1)dt |. (4.42)
0
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Next, we assert that the function

N

P(p,g,s)ﬂim [l;Il Yi(p.g,s) (4.43)

is well deﬁneq and meromorphic in C™X C2. To prove this, we fix a compact KC (™ X (2
w=21/p. Letting (p,g,s) vary over K, we can ensure (by taking /=L with L large enou

the bound (B21) applies for a suitable y e (0,7/2) and R (depending on K). Thus we de
; is analytic on K and satisfies

and put
gh) that
duce that

lvi(p.g,8)—1|<C/2, Y(p.g.s)eK, ViI=L. (4.44)
Consequently, the function IT}. LY converges uniformly on K to an analytic function for

N—, and the assertion easily follows.
We claim that u can be written

u(ay,a_,bz)=

(4.45)

Since we already know that u is meromorphic for (a_/a, ,b,z) € C” X2, we need only prove
this for z=x € R and parameters in % (4.34). To this end we show that the rhs is given by
exp(E(x)) (with E(x) defined by (4.30)): Using (A45) and (4.40) we have (with g=b/a_)

ix ix
r—-+1 F(————-+g N
_ _ a_ ix
(x——x) =i 71(a+’g’a_)
«dy sh(1~g)ysin(2xy/a_) il
=exp(2i el g Y e'gy-25hgy2 exp(—2lya./a.)
0oy shy =1

=dy sh(a_—b)ysin(2
=exp(lj _y ( )y ( xy)(e—bY(ea+y—e—a+Y)

0y sha _ysha .y
+(e'b-"—eby)e_"+y(1—e_z"’fNy))). (4.46)

A dominated convergence argument now shows that we may take N— under the integral sign,
yielding the limit exp(E(x)), as claimed. ‘

We conclude this subsection by deriving four distinct limits of the u-function, using param-
eters

a,=ma_=pv,b=pvg, B,v>0, geR. (4.47)
First, we assert that

21T
14

(IL,, limit), (448)

lim u(,Bv,Bvg;Bp)= =
o (p—-p)

where the limit is mero-uniform in p. To show this, we use (4.1), (3.22), (3.24) and (3.69) to write
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H(p;plv—ig+ il2)H(p;— p/v—il2)
(p——p)

u(m,Bv,Bvg;Bp)= , p=Bv/m. (4.49)

Then the assertion follows from (3.72).

The formula (4.48) can be interpreted as the (nonrelativistic) I limit of the (relativistic)
I, S-matrix, cf. Ref. 1, Eq. (3.45). It can also be derived from the product representation (4.45).
Indeed, one has

lim P(p,g,s)=1 (4.50)
pl0

uniformly for g,s in a fixed compact BCC2. To verify this, note first that ¥,(p,g,s) (4.39) is
analytic in B for p>>0 small enough, and given by (4.40). From this representation it follows that
v/(p.g,s) converges to 1 as p |0, uniformly for (g,s) € B. Next, observe that for p<e (with €
depending only on B) one may use (4.42) and the bound (B21) with w=21[/p to deduce

|v/(p.g.8)— 1|<Cgp*1*<Cyel*, Y(g,s)eB, VIeN* (4.51)

Clearly, this bound suffices to dominate the /-dependence, so one infers P— 1, uniformly on B.
The next limit amounts to taking the I limit of the dual II; S-matrix, cf. Ref. 1: We claim

lim w(m,Bv,Brg;vx)=exp(im(1—g)), xey (I limit), (4.52)
BlO

where the limit is uniform on compacts of 3, (2.73). Before proving this, let us note that the
restriction on x is essential: for Rex<<0 one obtains the complex conjugate phase factor by virtue
of (4.3). (For g & Z, the poles and zeros of u become dense on the imaginary axis as 80, cf. (4.1)
and Prop. I11.3.) Observe also that the phase amounts to a limit of the phase in (4.12).

To prove (4.52), we use the product representation (4.45) and several results from Appendix
B. First, we handle the prefactor

C(ix/B+ 1T (—ix/B+g)

Qplg.x)= o (4.53)
It can be rewritten
‘ T(wy+1) F(w_+g) ix
—piml-g) > T "7 (g—1)lnw T o (l-g)nw_ — 4+
Qp(g.x)=e ORTIN N0 , wt—::ﬂ. (4.54)

Using (B23) to rewrite the functions in brackets, and letting x vary over a fixed compact
KC.#,, we now exploit the bound (B20). First, taking R=1+|g| and y=m/4 (say), one can
ensure w, ,w_ € Sg , forallx e K by choosing 8 small enough. Then it follows from (B20) that

lim Qg(g,x)=exp(im(1—g)) (4.55)
BLO

uniformly for x e K. (This may be viewed as the II,,—1I,, S-matrix limit, cf. Ref. 1, Eq. (3.45).)
It remains to prove

lim P(p,g,iy/p)=1 (4.56)
plO

uniformly on compacts of {Rey>0}. To this end we first use (4.39) and (B23) to write
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71(p,g,iy/p)=eXP(ﬁa”z((iy+l)/p,1,g)+$’2((—iy+1)/p,g,1)+$2((iy+1)/p.o,1—g)

Next, we let y vary over a compact K C .7y, and use the bound (B20) in the same way as before
to infer that y,—1 for p|0, uniformly on K.

As a consequence, (4.56) will follow provided we can supply a bound controlling the inter-
change of limits N—c and p|0. Now the estimate (B20) is not sufficiently strong, since it only
lead§ to 1/I-decrease of | Y- 1/, and the sequence (1,1/2,1/3,...) is not in I', But we can obtain
a suitable bound by combining the representation (4.42) with the estimates (B21) and (B26), as
follows. ,

We begin by observing that (4.42) and (B15) entail

Yi(p.8.iy/p)=exp(4.%£5(21/p,g — 1,g 2iylp)). (4.58)

Letting y vary over K and choosing p e (0,€] with € small enough, we may take r;=cg/p in the
bound (B21) on 3. Choosing now y=0,R=(cx+1)/p and L>(cx+1)/2, we deduce

i 2iy\ ipyg(g—1)| p®
33(‘5,8—1,8,7)“*17‘— $Efcg,, pe(0e], =L, yeK. (459

Next, we use the bound (B26) to majorize the ths of (4.59) by Cp/I>. By dominated convergence,
this suffices to conclude that the function II;_; y, converges to 1 as p |0, uniformly on K. Since
we have already shown that y,—1 uniformly on K for all /=1, we may now deduce (4.56).
(Notice that (4.58) and (B21) are not adequate for showing y,—~ 1 for small /; this is why we used
(4.57) and (B19).)

Alternatively, (4.52) can be derived as a corollary of Prop. IIL7. Indeed, from (4.1) we have

G(masz+im/2+ia(1/2—g)) G(w,a;z—imw2+ia(g—1/2))
G(maz+inm2—ial2)  G(maiz—inl2+ial2)

u(m,a,ag;z)= (4.60)
Thus, we may use (3.91) with Rez>>0 to deduce the limit (4.52).

It is of interest to reconsider this limit in the setting of Theorem II.4. Choosing, e.g., g
e (1/2,1), one can take f,(z) equal to d lnu(ma.ag;z); letting a—0, one gets s,,(a)—0 and
fa(z)—0 uniformly on compacts in the left and right half planes. Even so, f,(z) does not remain
bounded near the origin, since u(z) has distinct limits in the left and right half planes.

We continue by obtaining a third limit of the u-function, keeping the parameters (4.47), but
now taking b fixed while letting B|0. Specifically, we claim

2ip | B F(%“ 2ip
lgﬁ)l exp( - —;—-ln( ZSinb) ) u(,Bv,b;Bp)= mexp(j—ln(Zv)),
be(0,m) (VI limit), (4.61)

where the limit is mero-uniform. The function on the rhs may be viewed as the (nonrelativistic
Toda) VI,, S-matrix, cf. Ref. 1, Eq. (3.45). The limiting transition IIq— VI, is readily controlled
at the level of the Poisson commuting classical Hamiltonians, cf. the paragraph containing Eq.
(3.87) in Ref. 2. Formally, it also holds true for the corresponding quantum Harniltonians: The
S-matrix limit (4.61) agrees with the obvious conjecture that the limit holds true for the ‘sultaply
normalized (reduced N=2) eigenfunctions; the plane wave factor on the lhs reflects the diverging
position shift (3.87) in Ref. 2.
To prove (4.61), we begin by observing that
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.

I (zm In ) G (4.62)
1im exp| — —_—— = .
e ST T =)

uniformly on p-compacts. (This limit amounts to the II,,— VI, S-matrix limit, cf. Ref. 1, Eq.
(3.45), and the paragraph containing Eq. (2.116) in Ref. 2.) Indeed, this follows from (B23) and
(B20) (taking w=g) in a by now familiar way. As a result, (4.61) will follow once we show

b
lim P(p,b/ﬂ'p,s)=exp( 2s1n( —-——)), be(0,), (4.63)
010 sinb

uniformly on s-compacts.
To prove (4.63), we write

vi(p,blmp,s)=exp(Ly(l/p,s+1,—s+1))exp( %, (I/p,s,—5))
Xexp(Zy((lm+b)l p,~s,5))
Xexp(Zy((lmr—b) 7p,— s+ 1,s+1))exp(—2sln(1—b%/1*1w?)). (4.64)
Since b € (0,7), we have [+ b>0, and so we conclude using (B20)

lim y,(p,b/mp,s)=exp(—2sIn(1—b2/1*7%)) (4.65)
pl0

uniformly on s-compacts. Now from (A23)-(A25) [with @=0, cf. (A28)] one derives the well-
known identity

sinb b?
T=l=1 1—7_7;‘2‘. (4.66)

Using this on the rhs of (4.63) and comparing with (4.65), we infer that we need only supply a
bound that is sufficiently strong to render the interchange of limits legitimate.

The bound (B20) leads to an O(I™!)-majorization, so it is not strong enough. Just as in the
previous case, we will now derive on O(I~2) estimate (for [ sufficiently large) by combining
(B21) and (B26). To this purpose we observe that we may write

Yi(p,blmp,s)=exp(4.%5(2l/p,— 1+ bl/wp,2s,blwp)), (4.67)

cf. (4.42) and (B15). For.s in a compact BCC and p € (0,€] with € small enough, we can take
r3=cg/p in (B21). Choosing then y=0,R=(cgz+1)/p and L>(cz+1)/2, we obtain

y(zl 1o D L) stbome)| P =L, scB. (468
R T T

Using now (B26), we obtain an upper bound C/! 2 on the rhs. As before, this suffices to conclude
that (4.63) holds true. The upshot is that the proof of (4.61) is now complete.
As a corollary of (4.61), we can obtain the integral

I'(1+iz) (sh27-rzf°° dt

1
T(i-im) P 727 Jo 2wzt chmr  [me| <3 (4.69)

241
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Indeed, combining the integral

® dt 1
Sh2 -——-=) - —
m fo ch2mz+chmt 2z, |Im|<2 (4.70)

(which results from (A43), e.g.), with (4.29), (4.38) and (4.36), we obtain

exp( ~2izln(£) ) u(m,B,b;Bz)

B sh2mrz (= dt sh?Btl2+sin*(b—p12) pB* |
=exp - n 5 ) e (471)
2i  Jo ch2mz+chmt sh®Bt2+sin"B/2  sinb| |’

where B € (0,6/2),b e (0,m), |Imz|<1/2. A straightforward dominated convergence argument
now shows that the rhs of (4.71) converges to the rhs of (4.69) for 8]0. From (4.61) we see that
the lhs converges to the lhs of (4.69), so (4.69) results. .

Finally, we obtain a limit that may be viewed as the classical limit of the quantum Il
S-matrix. To this end we introduce

Ly(p)=itlnu(m,h/\,b;p), (N,b,p)e(0,2)X(0,7)X. A, (4.72)
with Inu—0 for p—0, £>0 denoting Planck’s constant. We now claim that

sh(p+ib)sh(p—ib
limd,L;(p)=\In (P )2 (p=ib)
h0 sh”p

(classical limit) (4.73)

uniformly on compact subsets of the right half plane .2, with In real valued for p>0. (The rhs
amounts to the classical I, phase shift, cf. Ref. 1, Eq. (2.75) with B=1.)
To prove this claim, we substitute ag—b in (4.60) and use (3.83) and (3.84) to write

ialnu(m,a,b;z)=—D (z+im2—ib)— D (z—imw/2+ib)+ D (z+iw/2)+ D, (z—in/2)
—ad, (12,0;z+imw/2—ib)—ad,(—1/2,0;z—imw/2+ib)
+ad,(—1/2,0;z+im/2) +ad(1/2,0;z—i7/2). (4.74)

Taking a—0, the limit of (4.74) exists uniformly on compacts in % by virtue of (3.85) and
(3.86). Taking z-derivatives, one readily obtains a limit that amounts to (4.73).

B. The elliptic case

The elliptic scattering function is defined in terms of the elliptic G-function from Subsection
[I B via (4.1). In view of Prop. IIL.11, this yields a function that is meromorphic in r,a. ,a_.b
and z, as long as a.r and a_r stay in the right half plane. We shall from now on restrict the
parameters to

g’-=—{(r,a+,a_,b)|r>0,(a+,a_,b)e.%}, 4.75)

of. (4.5). By virtue of Prop. IIL9 the elliptic u-function is periodic in z with primitive period
o/ r; moreover, it satisfies (4.2), (4.3), and

w(2r,a,,a_.biz)=u(r.a..a_.b;2u(r.as.a- Jbiz—ml2r), (4.76)

u()\~1r’)\a+’Aa_’)\b;)\z)=u(r,a+,a_,b;z), )\E(O,OO). (477)
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Recalling (3.96)—(3.100), and using also (2.91), we see that u solves the AAEs

u(ztiag?) b s_s(z—ib+iag)s_sz+ib—ias2)
u(z~ia5/2)~eXp(2r(a5_ ) s_s(z+iag)s_z—iag?)

(4.78)

It now follows just as in the hyperbolic case that u is a regular solution to (4.78) if and only if
(a,.a_.,b) € Ag. Since u is m/r-periodic in z, the latter restriction also ensures that u is the
unique minimal solution satisfying (4.11). Furthermore, with (4.6) replaced by (4.78), the remark
below (4.12) applies verbatim to the elliptic case.

Using (3.100) and (2.91) we now obtain the analog of (4.13):

b+a_gs; . +ib
ubta-s3a) o Sa2tib) 4.79)
u(b;z) ss{z—1ib)
To simplify the iterations of these AAEs, we use the formula
s_____—(r,a;z.,.-i-ma) =e—2irn(z++z_) ___s(r,a_;z._+) neN, (4.80)

s(r,a;z_—ina) s(r,a;z_)’

which follows from (2.91). Then we obtain once more the relation (4.14), but now with an extra
factor exp(2irz(k.+k-—2k,k_)) on the rhs. Noting the elliptic analog

u(ray,a-,a.;z)=u(r,as,a-,a-;z)=1 (4.81)
of (4.16), we deduce the elliptic analog

u(r,ay,a_,0,z7)=—e 22 (4.82)

of (4.17) and, more generally, the explicit formula (4.18), with (4.20) replaced by
e =(—)"lexp(2irz(k+1-2ki—1)), kel (4.83)
It is clear that the symmetry property (4.21) continues to hold in the elliptic case. Moreover,
it leads again to the relation (4.22) between u(—b;z) and u(b;z). Next, we note that (4.23) still
holds true, since the elliptic G-function satisfies the multiplication formula (3.25). Hence, (4.24)

follows as before. Using the AAEs (3.100) and (2.91) we then obtain as the analogs of (4.25) and
(4.26)

a+ M-1 . . .
u r,-A—j,a_,b;z =(=)Y""lexp(ir(M—1)(2Mz+ia, —ib))

M-1 M-1
a; s_(z+ija, /M)
° ) ’ —:b; +k— N .
kI=IOu(ra+ G-y ,znl s G—ibtia 489
and
a+ M-1 . . .
u r,-ﬁ,a_,b;z =(—)""exp(ir(M—1)2Mz—ia, +ib))
M-1 M-1
a. s_(z+ib—ija,IM)
: 9 ’ —’b; - k_ .
I | s iamie ) [T S22 I g
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Once more, a,«a_ symmetry can now be used to obtain four distinc
u(r.a, /M,q_/N,b;z) in terms of u(r,a, ,a_,b;z) and s-quotients.

The choices b=a /2 or b=a_/2 yield the XYZ soliton-soliton S-matrix. Thus it follows
from (4.18) and (4.83) that the counterpart of (4.28) reads

t representations for

u(r,ma;,m2;z)=exp(2irz(l—j+21j~1))

J . -1
1 s(roagsztimm) o s(romiz+ikay)
m=1

==2) & (=g (XYD- (486)

Next, we use (4.1), (3.92) and (3.3) to obtain

i sh(a.—b)nrsh(a_—b)nr
Py nsha  nrsha_nr

u(z)=exp(E(z))=exp(2i sin2nrz |. (4.87)

The series converges absolutely if and only if (4.31) holds true. As before, regularity of u(z) for
parameters in % can be read off from (4.33). Furthermore, the series representation (4.87) is
valid for real z iff the parameters belong to the convergence region (4.34).

Choosing (a+ ,a_,b) € #£5 and introducing

s_slz—ib+iag)s_sz+ib—iagy?)
s_slztiag)s_sz—iag?2)

¢>5(z)51n( +2r(ag—b) (4.88)

with In real for z real, we can combine (4.78) and (4.87) to deduce that ¢4z) satisfies the
assumptions (2.100)—(2.102) of Theorem I1.5. Therefore, (2.107) yields

1 wi2r B a
E(z)=-2-—,——f dyos(y)K(r,as;z—y), (a,.,a_.,b)eRg, |Imz|<—f. (4.89)
i)~ wpr 2

This representation amounts to the elliptic counterpart of (4.37). Once more, the restriction on the
parameters is essential (though boundary points of .2 belonging to .# (4.5) can be allowed, of
course).
The product representation (3.117) for the elliptic G-function can be combined with (4.1) to
yield
ﬁ (1 —2q?¥n‘1q%_nnle—2i’ZCh(b"(a+ +a—)/2)+qim—2qin—2e—4ir:)
u(raa-l- ’a~,b’Z)——m,n=l (Z"')_Z)

. (1 —2qi""lq2”‘le2"”ch(a+ _a_)/2+qim-2qin—264ir:) vyt

. gs=e
(z—-2) 40

(4.90)

From this product representation one can read off meromorphy and pole/zero properties of
u(z). Notice that it is manifestly symmetric in a, ,a_ , in contradistinction to the product repre-
sentation (4.45) for the hyperbolic u-function.

We proceed by deriving four limits of the u-function. First, we observe that

lim u(r,a+ ,a ,b;Z)=uhyp(a+ ,a - ,b;Z) (Hrel hmlt)’ (491)
rl0
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where the limit is mero-uniform. (Here, upy, denotes the u-function from Subsection.IV A)
Indeed, in the definition (4.1) of the elliptic u-function we may replace the elliptic G-functions by
G p-functions, cf. (3.123). Then (4.91) is a consequence of Prop. IIL.12.

Second, we assert that the limit

lim u(r.a,A,b;7) =ugg(r.a,b;z) (g limit) (4.92)
A=

exists mero-uniformly. (Here, u;, denotes the u-function studied in the next subsection.) To prove
this, we use (4.1) and (3.22) to write

G(r,a,A;z+ib—ial2—iAR2)G(r,a,A;—z+ial2—iA/2)

w(ra A bi)= e AR)G(ra A tian—iA) )
Invoking now (3.139), we obtain the mero-uniform limit
G(r,a;z+ib—ial2)G(r,a;—z+ial2
ETHD: u(r.a,4,b32)= GEr,a;z—z-Hb—ia)/2)(G(r,a;z+ia/2; ’ (“4954)
which amounts to (4.92), cf. (4.100) below.
Third, fixing g € R, we claim that
lim u(r,A,a,ag;z)=exp((1—g)(im—2irz)), ze2, (Iv,, limit), (4.95)

all
uniformly on compacts in the period strip .72, (2.113). Indeed, from (4.93) and (3.138) we obtain

lim u(r,A,a,ag;z)=exp((1—g)In(R(r,A;—z—iA/2)/R(r,A;z—iA/2)) (4.96)
all

uniformly on compacts of .2,. Now the limit (4.95) easily results from (3.93).

We continue by examining this result in the setting of Subsection II C. Taking g € [1,2] and
a € (0,A/4], it entails that Theorem IL.7 applies to f,(z) =Inu(r,A,a,ag;z). In this case f,(z) con-
verges to the constant 2ir(g—1), uniformly on compacts KC.%,, but f.(z) diverges near
z=0 as @—0. Indeed, the w/r-periodic function f,(x),x € R, converges pointwise to a
7r/r-periodic function f(x) that has unequal limits for x |0 and x7 7/r (unless g =1, of course).
Notice in this connection that it does not follow from the above that f,(z) remains bounded in the
strip |Imz|<a/2 as a—0; we do not know whether this holds true.

We conclude this subsection by deriving the generalization of the classical limit (4.73). Thus
we define

Ly(z)=ihlnu(r,A,hIN,bsz), (r,\,b,z)€(0,0)2X(0,A)X.%,, (4.97)
with Inu—0 for z—0 and A>0 Planck’s constant. Then we have

s(r,A;z+ib A z—1i
lim,Ly(2) =in| ¢ -2 AT IBIS(r AL ib)
£—0 s(r,A;z)

(classical limit) (4.98)

uniformly on an arbitrary compact K C .7, , with In real for z e (0,1/r).

To prove this assertion, we exploit the obvious generalization of (4.74) and Prop. IIL.13 to
infer
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. R(r,A3z+iAl2—ib)R(r,Asz—iA/2+i
lim iad,lnu(r,A,a,b;z)=In (rAz+i ib)R(r,A;z—iA2+ib)

al0 R(r,A;z+iAI2)R(r,A;z—iA/2) (4.99)

qniformly on K. Using (3.93) and (2.91), we see that this limit amounts to (4.98). Notice that the
limit can be understood from Theorem I1.7 and (4.78), with alnu(z) playing the role of f,(z).

C. The trigonometric case
The trigonometric scattering function is defined by

G(z+ib—ial2)G(—z+ial2)
G(—z+ib—ial2)G(z+ial2)

u(r,a,b;z) (4.100)

with G(z)=G(r,a;z) denoting the trigonometric G-function (3.140). From the corresponding
product representation

o

1_ 2m— 2 —2rb- 21rz)(1 qu 2zrz)
u(ra b; Z : H 2m 2 —2rb+21rZ)(l 2m —21rz) qu-—ar’ (4101)

we read off that u admits analytic continuation to a function that is meromorphic in r,a,b and
z, provided ar stays in the right half plane. However, in the sequel we restrict the parameters to

T={(r,a,b)|r>0,a>0,b e R}. (4.102)

As before, this restriction entails |u(z)|=1 for real z.
Obviously, u is periodic in z with primitive period 7/r; it also satisfies (4.3) and the relations

u(2r,a,b;z)=u(r,a,b;z)u(r,a,b;z—m/2r), (4.103)
u(N"'rNa NbiNz)=u(r,a,b;z), Ne(0,%). (4.104)

From (2.90) and (4.78) [or directly from (4.100) and (3.142)] we deduce that « satisfies the
AAE

u(z+ial2) B ) b sinr(z—ib+iafl2)sinr(z+ib—ial2)
u(z——ia/2)_exP( r(a ))

sinr(z+ia/2)sinr(z—ial2) (4.105)

Clearly, this AAE is regular unless b=a/2. Now from the product representation (4.101) we see
that u(r,a,b;z) may be viewed as the unique minimal solution to (4.105) that obeys (4.11),
provided the parameters belong to the regularity region

F#={(r,a,b) e 7be(al2,®)}. (4.106)
Next, we use (4.101) to conclude

ubraz) | oy Sorlztit) (4.107)
u(b;z) sinr(z—ib)
(Alternatively, this follows from (4.79) by taking a limit.) By iteration this gives rise to (taking

kel)

w(b+ka:z) M sinr(z+i (kIJR]) (b— al2) +ia(j— 12))

=821r H

u(b;z) =1 (z——2)

(4.108)
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Now from the product representation (4.101) we read off
u(r,a,a;z7)=1, (4.109)
u(r,a0;z)=—e 2", (4.110)

and so (4.108) entails

k] . Lo
. sinr(z+ia(j— 6(k))
oY= ( —\Ykt+1,2ir(k—1)z
u(r,a,ka;z)=(—)"""e j|=|1 =

, kelZ, (4.111)

with 6(k) defined by (4.19).
The trigonometric specializations of the relations (4.84) and (4.85) read

a
u(r, M,b;z) =(— )M lexp(ir(M—1)(2Mz+ia—ib))

M-1 M-1
. a sinr(z+ija/M)
1 u(r,a,b,zﬁ-tk—ﬁ)j—l:ll = b JaltD) (4.112)

and

a
u(r,ﬁ,b;z) =(—)""lexp(ir(M—1)(2Mz—ia+ib))

M-1 M-1 .
. a sinr(z+ib—ijalM)
-kIJO u(r,a,b,z-zkﬁ) ,=Hl Py (4.113)

Of course, these formulas can also be verified directly from (4.100) and the multiplication formula
(3.145).

We proceed by obtaining series and integral representations for the (logarithm of the)
u-function. From (4.100) and (3.141) we obtain (formally at first)

=)

e P"sh(a—b)nr
M(Z)—CXP(E(Z))-GXP(mgl nshanr

sin2nrz |. (4.114)

(Alternatively, this can be deduced from (4.87) and (4.92).) The series converges absolutely
provided

|Imz|<d(a,b)/2, (4.115)
with
d(a,b)=a+b—|a—b|. (4.116)
Thus one has
d(a,b)y>a=b>al2 (4.117)

in agreement with the fact that 4 is a minimal solution to the AAE (4.105) for parameters in .72
(4.106). More generally, the series representation (4.114) makes sense and holds true in a strip
around the real z-axis iff the parameter b is positive.

Next, we take (r,a,b) e .72 and set
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sinr(z—ib+ia/2)sinr(z+ib~ial2)
sinr(z+ia/2)sinr(z— ia/2) +2r(a~b) (4.118)

¢(Z)Eln(

with In real-valued for z € R. Obviously, ¢ satisfies the assumptions (2.100) and (2.101) of
Theorem II-§, anq comparing (4.105) and (4.114) it follows that ¢ satisfies (2.102), too. Thus,
(2.107) applies, yielding the integral representation

wl2r

1
_ _ a
E(z)= i _mrd}’¢(Y)K(r,a;z—y), (r,a,b)e .2, |Imz|<5. (4.119)

By continuity, the representation still holds for b=a/2, but it is false in general for b<a/2.
To conclude this subsection, we obtain three limits of the trigonometric scattering function.

First, we use (3.155) to write

T(r;z—ib+il2)T(r;—z—il2)

,lab; = N ] - 2z
u(r z) Tri— 2= b+ i) T(rz=i2) exp(2ir(b—1)z). (4.120)
Then it follows from Prop. II1.20 that we have |

) I(—iz+g)l'(iz+1)

lim u(r,1,g;2)= 8 (I, limit) 4.121)

rl0 (z——2)

mero-uniformly in z. (Compare this to (4.48).)
Second, we observe that

lim u(r,a,ag;z)=exp((1—g)(im—2irz)), ze.R, (I, limit), 4.122)
al0

uniformly on compact subsets of the period strip %2, (2.113). Indeed, this readily follows from
(3.180), cf. also (4.95) and (4.96). The remark below (4.96) applies to the case at hand as well.
Third, we introduce

Ly(z)=ihlnu(r,hiN,bz), (r,\b,2)e(0.2)X2,, (4.123)
with Inu—0 for z—0 and >0 Planck’s constant. Then we claim that

inr(z+ib)sinr(z—ib
L sinr(z l~)2l D assical timit)  (4124)
smerz

1im 8,L;(z)=\ln| e ™2
A—0

uniformly on compacts of %, , with In real-valued for z € (0,7/r). To prove this claim, we use
(4.100) and (3.176), (3.177) to write

ialnu(r,a,b;z)=—D,(z+ib)+D,(—z+ib)—D,( —z)+D,(z)—ady(r,— 112,0;z+ib)
+ad,(r,— 12,0, z+ib)—ad,(r,1/20;~2) +ady(r,1/2.0:2),  (4.125)

where we take z € .7, . Invoking now Prop. II1.21, the limit (4.124) readily follows.

Comparing the rhs of (4.124) to the classical phase shift obtained in Ref. 17, p. 336, we get
agreement when we take A—f"lr—|ul/2,b—|Bg|, save for a constant shift
—2\rb— —|ug|. The latter shift can be understood from the fact that the distance between the
classical actions of the Il system is bounded below by |ug| (cf. Ref. 17, p. 256); by contrast, .the
minimal distance between successive indices 7;,n;.; of the multivariable polynomials occurring
at the quantum level equals 0. (See also Ref. 2, Subsection 6.2.)

J. Math. Phys., Vol. 38, No. 2, February 1997



1128 S. N. M. Ruijsenaars: Difference equations and integrable systems

V. WEIGHT FUNCTIONS
A. The hyperbolic case

Our study of the hyperbolic weight function w(a . ,a_ ,b;z) runs largely parallel to our study
of the u-function in Subsection IV A. The w-function is defined by

_ G(z+ib—i(as+a_)2)G(z+i(ar+a-)/2)

M) T i(a. Ta)2)Gle—ilas Fa_)2)’ -1
so it satisfies
w(a,,a_;z2)=wl(a-,a;;7) (5.2)
just as G(z) and u(z), cf. (4.1) and (4.2). The analogs of (4.3) and (4.4) are
w(—z)=w(z), (5.3)
w(kay ,Na_ Ab;\z)=w(a.,a_,b;z), \e(0,»). (5.4)
For several purposes it is convenient to introduce a reduced weight function
oGt se )
Using the AAEs (3.4), one infers that w and w, are related by
w(z)=4sh(mwz/a)sh(mz/a_Yw,(z). (5.6)

Obviously, w, also satisfies (5.2)—(5.4).

Just as the u-function, the functions w and w, are meromorphic in a .. ,a_ ,b and z, as long as
a_la. stays away from (—o0,0], cf. Prop. IIL.5. In particular, both u and w, are well defined for
b,z € C. Using (4.1) and (3.4), one readily verifies that the latter functions are related by

T aT
4sh—(z+ib)sh—(z+ib)
a, a_

G(ib—ilay~—a_)2)G(ib+i(ay—a_)2)’

u(iz;ib)=w,(b;z) (5.7

This relation can be used to translate various features of w, in terms of u and vice versa.
From now on we take (a. ,a_ ,b) € F# (4.5). We proceed by studying w and w, with regard
to the AAEs they satisfy, namely

w(ztias2) s_sztib—iag2) s_sz+ia2)
w(z—iag?2) - s_gz—ib+iag?) ' s_glz—iag?2)

(5.8)

and

w(z+iag?) B s_slzt+ib—iag?2)

wilz—iag2)  s_sz—ib+iag2)’

(5.9)

resp. (To check this, recall the definition (4.7) and the AAEs (3.4).)
Consider first w, . The planes (4.9) separate the region .7 (4.5) into infinitely many strip-like
components, one of which reads

Ss={(as,a_,b)e #be(ag2a_stas2)}. (5.10)
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The pole/zero properties of G
strip |Imz|<a /2 if and only
(a+,a_,b) e Fonehas

(.z) given by Prop. IIL.3 entail that w, is free of zeros and poles in the
if (as,a_,b) e .¥5. Now from Prop. ITL.4 we deduce that for all

Tz
w,.(z)=exp i——a+a_(2b—a+-a_) (1+0(exp(*=(e—2m/a,)z))), Rez—*w,

(5.11)

uniformly for Imz in R-compacts. Thus, choosing parameters in s, one may characterize w, as
a minimal solution to the AAE (5.9) that is even and positive for z € R; these properties determine
the solution up to a positive constant, cf. Theorem II.1. Next, we note that the rhs of (5.9) is
a - g-periodic in b, and identically equal to ~ 1 for parameters satisfying (4.9). (As such, the AAE
is regular for all (a, ,a_,b) e #, by contrast to (4.6).) But w, is neither a _ s-periodic in b, nor
an exponential when (4.9) holds true. We shall presently obtain the corresponding ia s-periodic
multiplier, after considering w in relation to the AAE (5.8) it obeys.
We begin by noting that the w-function has asymptotics

2mbz
W(Z)=CXP( iz—w—_) (1+O(exp(x(e—2m/a,)z))), Rez—*oo, (5.12)

Thus, it is a minimal solution to (5.8) whenever it has no poles and zeros for |Imz|<a #2. In view
of (5.6), for this to happen it is necessary that w,(z) have a double pole at z=0. For a, ,a_ fixed,
this necessary condition is satisfied only for a discrete set of b, so w is generically not a regular
solution—in contrast to w,, which is regular for parameters in .%.

It should be pointed out, though, that both of the AAEs (5.8) do admit minimal solutions for
all (a, ,a_,b) € H#. (Indeed, this readily follows from Theorem I1.3.) In particular, let us intro-
duce the asymmetric weight function

_ G(z+ib—i(a,+a-)2)G(z+i(as—a-,/2)
welay.,a_ ,b;z)= Gz—ibti(a. Ta)2)Gz-aga_gi2)’ (5.13)

This function is related to w, and w via

h(mwz/a_s)
wa(z)=w,(z)ish(—wig%z-§=w(z)/4sh2(wzla5) (5.14)

on account of (3.5), (5.8) and (5.6). Since w solves (5.8), so does w 5. Choosing the. p.ar.ameters in
As (4.10), ws is a minimal solution, as is easily verified. Multiplying and/or d1v1d1ng ws by
finitely many factors of the form ss(z—c), one can construct explicit minimal solutions for

arbitrary parameters. .
We continue by obtaining analogs of the formulas (4.13)—(4.20). First, we use the AAEs (3.4)

to obtain

W(b+a_s:z)

w T
=4sh—(z+ib)sh—(z—ib), W=w,w, ,w,,w_. (5.15)
W),

Taking k , ,k_ € Z, these AAEs can be iterated to yield
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W(b+k,a,+k_a_;z)

W(b;z)
[ - k a
5 P
S (o etz
5=11[.— jgl ( (S a—a( |k ol 2
1 kg/lksl
i oo ™ -
Next, we note that (5.5) and (3.4) entail
w(a,,a_0;z)=1, (5.17)
w(ay,a_,ag2;z)=2th(mzlas)sh(mrzla_s), (5.18)
w(ay,a_,(ar.+a_)/2;z)=4sh(mwz/a,)sh(wz/a_). (5.19)

Therefore, the weight functions are elementary functions for parameters in the dense subset
2,={(ay,a_,b)e #b=1,a,+l_a_,l. 1l el2} (5.20)

of J# (4.5). Specifically, one readily obtains from (5.16)—(5.19) (using the notation (4.19) and
takingk . ,k_ € Z)

|k 6l - ksilkgl
w(a+,a_,k+a++k_a_;z)=5H H1 (4(sha——;(z+ia5(j5—H(ks))))(i—»—i)) ,
=4+,— j5= -
(5.21)

w(a,,a_,ag2+kia,+k_a_;z)

ol ool oo

as a-s/js=1
[&_ sl . k_gllk_ g
- H (4(Ch—(z+ia_5(j_5—B(k_g))))(i-—a—i)) s (5.22)
j-s=1 as
w(as,a-,(ayta )2+kia,+k_a_;z)

[k gl kgllkgl

T2 7z ™ 1 et

=4sh(z)sh(a—:)5=ll_ ,L[x (4(cha(z+ia5(j5— 5)))(1‘—»—1')) )
(5.23)

We proceed by noting that none of the weight functions has the reflection symmetry (4.21) of
the scattering function. Instead, one gets from (5.5) the relation

wlar+a_—b;z)=1w,(b;z). (5.24)
Combining this with (5.16), one obtains

-1
a o
w(—bz2)w,(b;z)= [1 4sh—(z+ib)sh—(z—ib)| . (5.25)
5=+, ags ds
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Using the multiplication formula (3.25), one can work out analogs of the relations (4.23)—
(4.26) for the weight functions. We shall not do so, however. We do point out that w, satisfies an
additional relation involving shifts of /—as opposed to shifts of z:

a, a_
w, “M—,T\,—,b;z

M~-1 N-1
=11 11 w(a a b+ il (5.26)
o B0 rl@+,4-, M.] N 32 - .

(Indeed, this formula readily follows from (5.5) and (3.25).)

By contrast to the scattering function, the weight functions are elementary functions on all of
the sine-Gordon lines. In particular, from (5.6) and (5.18) we have

w(m,a,mw/2;z)=2thzsh(7ma~'z) (sG) (5.27)

for all @>0. (Compare this to (4.28).)
Next, we obtain an integral representation for w,: From (3.1), (3.3) and (5.5) we have

w(z)=exp(I(z)), (5.28)
where
I(z)= :ﬁiyl( Sh(:h;—:;S;l;_zf)yCOSZyz— __a+:+aa_‘;2b . (5.29)
This integral converges absolutely provided
Imz|<e(a; ,a_,b)/2, (5.30)
where
e(a,.,a_,b)=a,+a_—|2b—a,—a_|. (5.31)
Thus we have in particular
ela,,a_,b)>as=(ay,a_,b)eSs, (5.32)

which says once more that w, is regular for parameters in ..
More generally, the integral representation (5.28) sense and holds true in a strip around the
real z-axis iff the parameters belong to # (4.34). Indeed, one clearly has

e(ay,a_,b)>0e(ay,a_.b)eb. (5.33)
Combining the representation with (5.6), (5.14) and (5.15), we obtain the positivity property
W(a,,a_,b;x)>0, V(as,a_,bx)e FXR*, W=ww, w,w_. (5.34)

From (3.1) and (3.3) we also obtain an integral representation for the asymmetric weight
function w5 (5.13), viz.,

ws(z) =exp(I5(z)) (5.35)
with
ody [sh(a_s—b)ych(as—b)y a_s—b
= _ C - . 5.36
Ls(2) zjo y( sha, ysha_y 2T ey (5.36)
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Obviously, this integral has the same convergence properties as the integral (4.30), so the analysis
embodied in (4.31)—(4.35) applies once again.

We have not found illuminating analogs of the representations (4.38) and (4.45), so we
conclude this subsection by deriving two limits of the weight function w. (Corresponding limits
for w,,w, and w_ readily follow, so they will not be spelled out.) Once again, we switch to
parameters (4.47).

First, we use (5.1), (3.22), (3.24) and (3.69) to obtain

H(p;p/v+il2)H(p;— p/v+il2) _

(5.37)

Therefore, Prop. II1.6 entails

F(ip/v+g)T(—ip/v+g) .
. ~2g . = I 1 s .38
Efrg(zﬁv) $w(m,Bv,Bvg;Bp) (i) (= iplv) (It limit),  (5.38)

where the limit is mero-uniform. (The limiting weight function is associated to the analytic
difference operators of the I regime, cf. Refs. 1 and 2.)
Second, we may write

G(ma;z—imR+ia(g—1/2)) G(ma;z+im/2+ia(1/2))

Z)= . . (5.39

W a8 = e T ia(=12))  Glmaztinitia(in—g) 39
Therefore, we deduce from (3.91)

lim w(m,Bv,Brvg;vx)=exp(2¢gIn(2shvx)), xe. 7y (I, limit) (5.40)

Y

(with In real-valued for x>0), uniformly on compacts of .%%,. (The limit is the weight function of
the II, regime, cf. Refs. 1 and 2)

B. The elliptic case

The elliptic w-function is defined by replacing in (5.1) the hyperbolic G-functions by their
elliptic counterparts. Obviously, this yields a function that is periodic in z with primitive period
a/r, and which satisfies (5.2), (5.3), and (4.76), (4.77) with u replaced by w.

Just as in the hyperbolic case, we introduce a reduced weight function by (5.5). Then we
obtain via (3.100) and (3.96)—(3.99)

w<z>=4r2kI_Il (1=g3H2 1= g2 5, (2)s _(2)w,(2). (5.41)

Evidently, w, shares the automorphy properties of w mentioned above.
From Prop. I11.11 we deduce that w and w, are meromorphic in r,a, ,a . ,b and z, provided
a.r and a_r stay in the right half plane. As the analog of (5.7) we then obtain

- ArTE o (1= g2 (1= g®)2 s (z+ib)s _(z+ib)
ws i) = ) G oy i, —a G —a ) %)

From now on we take the parameters in # (4.75). Turning to the AAEs satisfied by w and
w,, we obtain once more
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w(ztiag?) _s_slztib—iag) s_s(z+iayl2)

w(z—iag2) s_slz—ib+iag2) s_s(z—iag2)’ (5.43)
whereas (5.9) is replaced by
wiz+iag2) o S_slztib—iag?2)
wia—iag2) P e ) (5.44)

Considering first w,, we reach the same conclusion as in the hyperbolic case—Prop. II1.10
and m/r-periodicity in z play the role of Prop. IIL.3 and the asymptotics (5.11). Turning to
w(z), one readily sees that it generically has double zeros at z=km/r,k e Z, and hence is not
regular. The asymmetric function w 5 defined by (5.13) is now related to w, and w via

_ . 1-42}5)2 s_s(z) w(z)
wa(Z)—Wr(Z)k];I] ( - g% e = AT (=D s (5.45)

Since s 4(z)? is not ia s-periodic, w 5 does not satisfy the AAE (5.43), however. To obtain minimal
periodic solutions to (5.43), one should rather multiply w(z) by an elliptic function with periods
ar/r and ia 5. We shall neither embark on this nor on a study of the AAEs solved by the functions
w, and w_.

We continue by obtaining the counterparts of (5.15)—(5.19). First, from (5.1), (5.45) and
(3.100) we readily get

2]

W(b+a_s;z)
"WE?“:“rze_zrbgl (1-¢3)* solz+ib)ssz—ib), W=w,w, ,w, w_.
(5.46)
To obtain the analog of (5.16), we employ the relation
s(r,a;z4 +ina)s(r,a;z_— ina)=e“2""‘“"Z~)ez“’”zs(r,a;z+)s(r,a;z-), neN,
(5.47)

which is easily derived from (2.91). (This formula plays the same role as (4.80) in simplifying the
iterated AAEs.) A straightforward calculation now yields (with k. ,k_ e Z)

W(b+k,a,+k_a_;z)

=exp(2rb(2k+k_-—k+—k_))5H exp(rasks(ks—1)(2k_ s
=+‘_

W(b;z)
|kﬁl s k5 615
) IT {4211 (1 —g%)*| s_ol z+ic>| b— =
js=1 k=1 lk&l 2
1 kﬁllk5|
Next, we use (5.1) and (3.100) to obtain
w(r,ay,a_0;z)=1, (5.49)
- 55(2)
) o 2k\20q o 2kN2 '
wray.a-,ad22)=4r2[1 (1-¢29%(1-¢2)% =5 4(2), (5.50)
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Ww(ras.a_,(a,+a_)2;z)=4r ]I_Il(l—q%"ﬁ-sa(z)- (5.51)

s=+,-

If we now combine these formulas with the quotient formula (5.48), we obtain obvious analogs of
(5.21)—(5.23)—which we do not spell out.

We proceed by observing that (5.24) holds true for the elliptic w, , too. In tandem with (5.48),
this entails

£ -1
W,(_b;z)w,(b;z)=51'+[ ) 4r2k1=I1 (1—¢%)* ss(z+ib)ss(z—ib) | . (5.52)

Analogs of (4.23)-(4.26) for the elliptic weight functions are readily derived from the multipli-
cation formula (3.25), so they will be skipped. The latter formula also entails that the elliptic
w,-function obeys (5.26).

As the elliptic counterpart of (5.27) we obtain from (5.50) and (5.41)

x©

s(r,mz)
W(r,ﬂ,a,ﬂ'/Z;z):A,r?H (1 _e"zkﬂTl‘)Z(l___e—Zkar)z.
k=1

ms(r, a;z) (XYZ).
(5.53)

This holds true for all «>0, as opposed to the explicit formula (4.86), which holds for the dense
set (4.27).

We now turn to deriving and studying a series representation for w,. Recalling (3.3) and
(3.92), the definition (5.5) entails

sh(a,+a_—2b)nr

w,(z)=exp(S(z))=exp ngl nsha nrsha_nr cos2nrz |. (5.54)

The convergence properties of the infinite series S(z) occurring here are the same as those of the
integral 1(z) (5.29), so the analysis encoded in (5.30)—(5.33) applies verbatim. Using this repre-
sentation, (5.46) and (5.45), we now deduce the positivity property

W(r.a,,a_,b;x)>0, VY(r,a,.,a_,b,x)e&X0,m/r), W=w,w,,w.,w_. (555)

It is of interest to compare the series representation (5.54) to Theorem IL5. Choosing param-
eters in .5, one deduces that Theorem IL.5 applies to the additive version of (5.44), and that
w, corresponds to the unique minimal solution (2.106). Via (2.107) one can now obtain an integral
representation for w,—as an analog of the representation (4.89) for the elliptic u-function.

To conclude this subsection, we derive three limits of the w-function. First, we use Prop.
[I.12 to infer

2
. mb -
lrxlr(r)l exp(3m+a_ )w(r,a+ a-,biz)=wyg(ay,a_,biz) (Il limit), (5.56)

where the limit is mero-uniform. (Here, Whyp denotes the w-function from Subsection V A.) Note
that the renormalizing exponential is necessary, and that no such factor occurs in the u-function
counterpart (4.91).

Next, we claim that the limit
lim w(r,a,A,b;z)=wy,(r.a,b;z) (Il limit) (5.57)
Ale
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exists mero-uniformly. (Here, w.y, denotes the w-function studied in the next subsection.)

we may rewrite (5.1) as Indeed,

G(r,a,A;z+ib—ial2— iA2)G(r,a,A;—z7+ib— ial2—iA/l2)

w(r,a,A,b;z)=
G(r,a’A§Z"‘ia/Z“iA/Z)G(r,a’A;—-z-—ia/z_.iAlz) ,  (5.58)

s0 (3.139) yields the mero-uniform limit

G sa; +ib—i Ml ib—1i
lim w(r,a,A,b;z)= (ruaie+ib z.a/Z)G(r,a, Lhib-ial2) (5.59
Ao G(r.a;z~ial2)G(r,a;—z—iald) 59)

In view of (5.61) below, this entails (5.57).
Finally, fixing g € R, one has

lim w(r,A,a,ag;z) =exp( 2gln( 2rH (1 —e_ZkA’)Z‘s(r,A;z)
al0 k=1

), ze#, (IVy limit)
(5.60)

(with In real for z & (0,7/r)), uniformly on compacts of %, (2.113). To check this, one need only
substitute b=ag in (5.58), invoke the limit (3.138), and recall (3.96)-(3.99).

C. The trigonometric case

The trigonometric w-function is defined by

G(z+ib—ial2)G(~z+ib—ial2)

w(r,a,b;z)= G=1al)G(—z=iald) (5.61)
with G given by (3.140). Thus, it can be written
® 1_q2n62irz o
W(r,a,b;z)=”I;I0 (W (z—~12), q=e . (5.62)

We note that w is 7/r-periodic and even in z, and satisfies (4.103) and (4.104) with u replaced by
w.
Next, we introduce the reduced weight function

w,(2)=G(z+ib—ial2)G(—z+ib—ial2), (5.63)

which has the same automorphy properties as w. Recalling the functional equation (3.154) and
AAE (3.142) satisfied by the trigonometric G-function, one readily verifies that w, and w are
related by

w(z)=4r]] (1-¢*? s(r.a;2)sin(rz)w,(2). (5.64)
=1

Obviously, w, and w are meromorphic in r,a,b and 7, as long as ar stays in the right half plane.
As the counterpart of (5.42) one easily gets

®  G(-ib+ial)
u(z‘z;ib)=4rl=ﬂ1 (1—qZ’)2~s(r,a;z+ib)smr(z+tb)W“’r(b@- (565)
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Taking from now on parameters in.7 (4.102), we turn to the AAEs solved by w and w,, viz,,

w(z+ial2) sinr(z+ib—ial2) sinr(z+ia/2)

w(z—ial2) sinr(z—ib+ial2) sinr(z—ia/2) (5.66)
and

w,(z+ial2) _sinr(z+ib—ial2)

w—ian) i) G (5.67)

Clearly, both AAEs are regular for arbitrary parameters. Choosing parameters in .72 (4.106), one
readily verifies that the reduced weight function is a minimal solution to (5.67) that is even and
positive for z € R. As such, it is uniquely determined up to a positive constant, cf. Theorem IL1.
For b=<a/2, however, it has poles in the strip |Imz|<a/2, so it is not regular. The weight function
w(z) has double zeros for z=ka/r,k € Z,unless b= —na,n € N;in the latter case one easily sees
that w is a minimal solution to (5.66).

To proceed, we note that w and w, satisfy the b-AAE

W(b+a;z)

Wb =4e " ¥bsinr(z+ib)sinr(z—ib), W=w,w,. (5.68)

Hence, iteration yields (with k e Z)

. |4l ki ||
W(b+ka;z) T k a 1
= — — »(k_l) . +‘_ - . ;o . _
_—W(b;z) e ,1;11 4| sinr| z lik| b 2 +ialj 3 (i——1i) .
(5.69)
Now from (5.61) we read off
w(r,a,0;z)=1, (5.70)
so we deduce
J«l
w(r,a,ka;z)=e otk ”H (4[sinr(z+ia(j—O0(kK))][i— — i])k/“‘l, (5.71)
j=1
where k e 7 and the notation (4.19) is used. Moreover, from (3.154) we have
w(r,a,al2;2)=R(r,a;z)"", (5.72)
so recalling (5.64) we obtain (with k e Z)
w(r,a a/2+ka-z)=4rﬁ (1— 2’)2-M i
” ' =1 T Rra)™*
Ik| 1 kK|
1_[] (4(sinr z+tia j—é-)))(i——»—i)) . (5.73)
=

Using the multiplication formula (3.145), one easily derives analogs of (4.112) and (4.113) for the
weight functions. In addition, (3.145) entails that w, satisfies
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ab
Wr rva 72

Next, we use (3.141) to obtain a series representation for w,, namely

M-1 a
= 21U,y + — 5 . .
kl;IO w,(r ab Mk z) (5.74)

————Co0s2nrz
a

n=1 nshnr

* _nr(a=2b)
) . (5.75)

SRNEY

Provided 5> 0, this representation makes sense and holds true for |Imz|<b. In particular, this
entails once more that w, is a minimal solution to (5.67) when the parameters belong to .72
(4.106). (More specifically, w, amounts to the unique minimal solution given by (2.106).) Fur-
thermore, using (5.68) and (5.64) one deduces

W(r,a,b;x)>0, Y(r,a,b,x)e 7X(0,m/r), W=w,w,. (5.76)

We finish this subsection by obtaining two limits of the trigonometric weight function w.
Recalling (3.155), we rewrite (5.61) with a=1 as

T(r;—z+il2)T(r;z+i/2)
T(ri—z—ib+il2)T(r;z—ib+i/2)

w(r,1,b;z)= exp(rb(1—>b)+2bIn(2r)). (5.77)

From Prop. I11.20 we now infer

I'(—iz+g)l(iz+g)
. -2g N — ..
lrllrgl(2r) w(r,1,2;2) =i (%) (L limit), (5.78)
where the limit is mero-uniform. (Compare this to (5.38).)

Next, we substitute b=ag, with g € R fixed, in (5.61). Recalling then the limit (3.180), we
deduce

lim w(r,a,ag;z)=exp(2gIn(2sinrz)), zes, (I, limit) (5.79)
al0

(with In real-valued for z € (0,7r/r)), where the limit is uniform on compact subsets of the period
strip .72, (2.113).
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APPENDIX A: THE GAMMA FUNCTION AND RELATED INTEGRALS

This appendix serves a twofold purpose. First of all, it is included to render this paper more
self-contained. Indeed, most of the Laplace, sine and cosine transforms we derive below can be
found—without proof—in standard sources such as Refs. 18 and 19; moreover, all of the proper-
ties of the psi and gamma functions we need can be found—with detailed proofs—in various
sources, for instance Ref. 16. Our second purpose, however, is to demonstrate how these proper-
ties can be very quickly derived via the minimal solution (2.26) to a suitable AAE (2.22); this
yields a paradigm for the study of generalized psi and gamma functions undertaken in Section IIL

Specifically, our starting point is the AAE
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i
F(Z+l/2)_F(z—l/2)=z——T/E=X(Z)' (Al)
A contour integration yields

i

1 (= ) B
)Q(y)=§-7;f_mdxx_i,2e“y=-e Y26(y), (A2)

so this AAE is of the type considered in the proof of Theorem IL3. Indeed, (A2) entails

() =iye0(y), P(2)=x'(2)=—i(z—il2)7?, (A3)

and therefore ¢(z) has all of the properties (2.18)-(2.21). From Theorem II.2 we now obtain a
solution

@ e ? .
f(z)=2ifo dy y—sge‘z'ﬂ, Imz<1, (A4)

to the AAE (2.22), which is the uniquely determined solution with properties (2.23)—(2.25).
As a consequence, the function

o -y

F1(z)=F1(0)+012+J dyE(l—e_Ziyz) (AS)

0

is a solution to (A1) for a certain ¢; € C. Now we have

o e—y
Fl(l/2)—F1(—l/2)=lC1+f dy—(-ey+e—y)=lcl—2 (A6)
o ~ shy

Hence, noting x(0)=—2, we need ¢;=0 to solve (Al). Of course, we are free to choose
F(0), and we shall set

@ (g2 g7V
F1(0)=fo dy(—“y——gﬁ;)g'"% (A7)
(As will soon become clear, v is Euler’s constant.) The upshot is that we obtain a solution
o (g™ py(1+2i7)
FI(Z)EJO dy( 5 sy ) Imz<1, (A8)

to the AAE (A1). Note that the function F,(z)=F (—z+i) yields a second solution to (A1), so
that F((z) — F,(—z+1i) is an i-periodic meromorphic function (determined explicitly below).

Next, we observe that the AAE (2.22), with ¢(z) given by (A3), can also be solved by
downward iteration, yielding the solution

flz)= —ik; (z—ik)™2. (A9)

Now this solution clearly has the properties (2.23)—(2.25), so we must have f(z) = f(z). From this
we readily deduce
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o1 1
Fi(z)=—y+i (——— ——)
@==r+iZ | =) (A10)
(Indeed, the function on the rhs has derivative f(z) =f(z) and value -y for z=0, just as F 1(2)
(A7) and (A8).) As a consequence, we obtain the functional equation

. . - l
Filz+ild)=Fi(=zil)== 3 | o iz—nl— i

~ =imthms. (Al1)

Note that the ths amounts to the i-periodic meromorphic function mentioned below (A8).
We are now prepared to make contact with the psi and gamma functions. First, we introduce

= e~y =22
l!/(z)EFl(‘iz+i)=J'o dy(-—y—~ hy ) Rez>0. (A12)
Then we obtain from (Al) and (Al1) the AAE
Y(z+ )= Y(z)=1/z (A13)
and functional equation
Yz +12) = Y(—z+1/2) = wtgmz. (A14)

Moreover, we have (1)=—v and (z) has simple poles at z=0,~1,—-2,..., cf. (A10).
Next, consider any primitive W(z) of ¢(z), restricted to the cut plane

C"={ze(lz¢(~x,0]}. (A15)

Clearly, W (z) is analytic in C™ and satisfies
Y(z+1)-V(z)=Ilnz+c,, zeC, (A16)
V(z+1/2)+ ¥ (—z+1/2)=—In(cosmz) +c3, Tz&[1/2,), (A17)

in view of (A13) and (A14). Now from (A12) we have

-2y e

2 *® e
v -w= [Tanion= | dy('_y_+ Zyshy

(8_4‘\»_8—2)') =0, (A18)

so that ¢; =0 in (A16). Clearly, ¢ in (A17) depends on the arbitrary constant in fI’(z); we render
¥ unique by requiring 2¥(1/2)=1In and then we get c,=Inm bY taking z=0 in (A17).
The upshot is that we obtain a primitive W (z) of ¥(z) satisfying

P(z+1)-¥(z)=lnz, (A19)
Y(z+12)+¥(—z+ 1/2)=In(m/cosmz). (A20)

Introducing the function
I'(z)=exp(¥(2)) (A21)
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(defined at first in C7), it readily follows that I'(z) extends to a meromorphic function without
zeros and with simple poles at z=0,~1,—2, ... . Indeed, from (A10) and (A12) we deduce that
we have

x

b4
V(z)=a—yz—Inz— 2} (ln 1+ -

3
- (A22)

for some @ e C (with Inz real for z>0, of course). Therefore, we obtain

1 - b4
—, o kyz ~\,—un o
—F(Z) e an=|1 ( 1+ n) e (A23)

and from this the assertion is clear. From (A19) and (A20) we also obtain the AAE
[(1+2)=2zI(2) (A24)
and functional equation
I'(z+1/2)T(=z+1/2)= m/cosmz. (A25)

In order to determine @, we note that (A23) and (A24) entail

1 1
ew:}i{%zf_(z)—:m' (A26)
Now from (A24) and (A25) we have
I’(z+1/2)I‘(—z+3/2)=z£—:-z—il—/2—), (A27)
cosmz
which yields I'(1)?>=1 for z—1/2. Thus we conclude
r'(l)y=1, a=0, (A28)

since T'(z) is positive for z>0. (To see this, note that (A12) entails (z) is real for z>0. As
W(1/2) is real, it follows that W (z) is real for z>0, so positivity is clear from (A21).)

Combining (A23) and (A28), we see that I'(z) is the customary gamma function in Weier-
strass product form, as anticipated by our notation. Similarly, ¥(z) is the usual psi function (the
logarithmic derivative of the gamma function), and (A12) amounts to Gauss’ formula, cf., e.g.,
Ref. 16.

We now derive a number of definite integrals by exploiting the properties of (z) and
I'(z) established above. The order in which this is done is determined by the order in which these
integrals are needed in the main text, except when logical necessity requires otherwise.

First, we use the well-known integral

ody _ °° P pds
—(e V- P)= dyj dse sy=f —=In(p/q) (A29)
0y 0 q q S
and (A12) to obtain
= (1 1)
¢(z+1/2)—-lnz=j0 dy S Ty Y2 Rez>0. (A30)
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Integrating this from O to z and using 2¥(1/2)=Inm, we arrive at
1 1 1l (=dy(1 1
\If(z—i-—-)-—lmr— Inz+ =~j S L P
3173 Zlnz+z 203 \5 (1—e™%7%), Rez>0. (A31)
Now the function on the lhs is analytic in C™ and the integral on the rhs converges absolutely for

Rez20. ThuS, (A3l) holds true for Rﬁz=0, too. Putting z=ix and Z:—-ix’x e R’ in (A31) and
taking the sum of the resulting equations, we obtain using (A20) ,

*dy (1 1
1n(7r/ch7rx)—ln7r+7rx=c-f -—(___
oy \y shy cos2yx, (A32)
where we have set
gody(l 1 )
c=[ 2|
oy \y shy (A33)

If we now take x— in (A32), then the integral has limit O (by virtue of the Riemann-Lebesgue
lemma), so we must have

C=In2. (A34)

Combining this with (A31) and (A21), we obtain the integral representation
1 (=dy|1 1
[(z+12)=2m)"? Inz — ——f A IS ) 4
(2+1/2)=(2m) Pexp| zle—z=5 | 2| Z=goje™™), (A35)

which holds true for Rez=0.
Next, we put g=2,p=2w in (A29) and integrate w.r.t. w from 0 to z to obtain the identity

wdy| _, e -1
zlnz-z=f —le Yz+ . (A36)
0oy 2y
Inserting this in (A35), we get the representation
©dy 1 e
=(2m)? e —t— A37
T'(z+12)=(2m) exp( fo ) (ze % 2y ) (A37)

which is valid for Rez> — 1/2. A routine calculation using (A37) and (A29) (with g=2,p=2w)
now yields

w ~N_ -t
LOVEN) e o j i x—wf————e_—,—)), (A38)
T(w+p) 0t 1=

* which holds true for Rew>max(0,— Rek,—Reu). Therefore, the function

2
w+>\(r(w+>\)e_m"w) (A39)

FowM= o To—n

admits the representation
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2dt
F(w,)\)=exp(2f Te'w’(2)\—sh)\tctht/2) , (A40)
0

provided Rew>|Re\|. (To check this, use (A38) and (A29) with g=w—N\ and p=w+\.)

The function F(w,\) will reappear in Appendix B; it is crucial for obtaining Prop. IIL5 in
Subsection III A. We conclude by deriving some formulas that are used towards the end of
Subsection IV A. First, (A12) entails the cosine transform

Y((p+1+ix)2) = y((g+1+ix)12)+ (x— —x)

©d
= jghy—y(e'qy—e_”)cosxy, Rep,Reg>—1, xeR (A41)
0

Now we take Re p € (—1,1) and put g= —p. Using (A14) and the elementary identity

v ) 2sin20 C
tg(o 17')+tg(0'—z7')—m, o,7eC, (A42)
we obtain
f “ay Y say= TSP Rep|<1, xR Ad
0 Y shy oSY=3 cosmrp+ch mx’ PISL XER (A43)
Integrating this with respect to p from s to ¢ yields
=dy (chty—chsy) charx +cosms
—— = —_—_— <1.
2 jo . r— In| m—r ), |Res|,|Ret| < 1 (A44)

Finally, we integrate (A41) w.r.t. x from O to —2is and put p=r+\,g=t—\. The resulting
formula entails the identity

-ty

1)

C(s+(1+X+0)/2)T(=s+(1=A+1)/2) ( »dy shAysh2sy
=exp|2 | ——————e¢

(s——s) shy

Rer—|ReN|>—1, seiR. (A45)

APPENDIX B: UNIFORM ESTIMATES

The main goal of this appendix consists in deriving bounds that are sufficiently strong to
control the convergence and meromorphy properties of infinite products involving gamma func-
tions, which occur in the main text. Our tool for doing so is Theorem B.1, which deals with
Laplace transforms L(w),w e C, of a certain type. More generally, this theorem can be used to
obtain estimates on remainders in asymptotic expansions that hold uniformly in sectorial regions
|Argw|<7—¢€,|w|=K=K(e) for any €>0. As such, it is inspired by, but simpler than, the
methods that can be found in Ref, 20, Sections 21-25, and Ref. 16, Section 13.6.

Assume h(z) is a function that is analytic in the right half plane Rez>0 and at z=0.
Moreover, assume h(z) satisfies the bound

[h(ze'®)[<C(x)e™, V(1.4)€[0.2) X[~ x.x], (B1)
where ¥ € [0,7/2) and r e [0,%), and where C(x) is a positive non-decreasing function on

[0,7/2).
Theorem B.1: The function
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L(w)= f:e'w’h(t)dt (B2)

z:s well defined and analytic in {Rew>r}. Furthermore, L(w) can be continued to a function that
is analytic in

U,={Rew=0,

w|>r}U{Rew<0,|Imw|>r}. (B3)
Finally, fixing x e [0,7/2) and R>r one has
ILw)|<CX)(R=r)"!, VweSg, (B4)
where
SR,XE U|¢|sX{Re(e"¢w)=,>R}. (BS)

Proof: The first assertion is obvious. To prove the second one, consider the integral
e"XL exp(—wteX)h(te'X)dt, xe(—m/2,m?2). (B6)

Due to the bound (B1) this defines a function L,(w) that is analytic in the region
U,'XE{Re(ein)>r}. (B7)

We claim that L,(w) equals L(w) in U, oMU, , . Taking this for granted, the second assertion
follows, since we have

U,=Uy<arUr - (B8)
To prove the claim we first take ¥ € [0,7/2). Fixingw € U, NU, ,, we then have

inf {Re(e'®w)}=min(Rew,Re(e*w))=r+¢ (B9)
¢e(0x]

with €= e(w)>0. Using (B1) we now obtain
lexp(—wte'®)h(te'?)|<C(x)e™, V(¢.1)e[0,x]X[0). (B10)

This bound entails that the integral of ¢ ~**A(z) over the contour z =K ¢'?,¢ e [0,x], vanishes for
K— . Thus we may replace the contour te'X,t e [0,%0), in the z-plane by the positive real axis,
yielding L, (w)=L(w). This proves our claim for non-negative y, and the same reasoning applies
to negative x.

It remains to prove (B4). To this end we fix w € Sg,. In view of (BS) we can find ¢
e [~ x.x] such that Re(we'?)=R. Then we get

IL(w)|=|Ly(w)|< f:;exp<-wtew)h(tewndtscm f:e‘“e"dr=c<x>(R—r>-‘,
(B11)

where we used (B1). Thus (B4) holds true. O
To illustrate how this result can be applied, we consider the Laplace transform
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Hw)= f:e‘wf(z)dz, (B12)
1 1
f(t)E;—S—};, (B13)

occurring on the rhs of (A30). Integrating by parts n times, we obtain

Zw)= 2, w"f‘"”(O)=w‘"f:e“w’f(")(t)dt. (B14)

Now the function A(f)=f")(z) satisfies the assumptions of Theorem B.l with r=0, so (B4)
yields a bound on the remainder integral that is uniform in Sg , ; fixing 6>0, the sectorial region
|Argw|<m/2+ x— 8,|w|=K, belongs to Sg,y for K=K(6,R,x) large enough, cf. Fig. 1.

The Laplace transform in (A35) can be handled in the same way. This yields an asymptotic
expansion that is substantially equivalent to the Stirling series, valid uniformly in sectorial regions
of the above type.

For applications in the main text, however, we shall exploit Theorem B.1 to obtain uniform
estimates pertaining to the Laplace transforms

c,%}(w)=J’ e-—wtfj(t)dt’ j=123, (B15)
0
with
1
f1=7(2N=shhzeth/2)=£,(0)=0, f{(0)==N(2\*+1)/6, (BL6)
1 e—)\l_e—,ut
f257()\‘/'4+—]:’T):fz(o)z()\”ﬂ)()""/"—1)/2’ (B17)
shAzshutshrt ,
=y o (0=0 f3(0)=ux. (B18)

4

Then the functions hy=f{,h,=f; and hy=f3 satisfy the hypotheses of Theorem B.l. Corre-
spondingly, we deduce the bounds

2
+)\(2)\ +1) < Ci(x.\)
6w?

;%l(W,)\) IWZI(R—I"I)’ Y'IED\I, (Blg)
‘ A=) (N+u+1) | Colx.\m)
C — =
Lo(w,\, @) 7o s]w](R_rz), ra=max(|\],|u|), (B20)
- Aur|  Ci(x,N,pu, k)
f/ué(W,)\,,U,,K)_ W2 = |w2{(R—r3) N r3EI)\]+|M|+|K, (BZI)

which hold true for R>r; and all w € Sg , . The functions C; are positive and non-decreasing in
x for fixed values of the parameters, and they are continuous in the parameters for fixed x.
Recalling (A40), one easily obtains a corresponding bound on

F(w,\)=exp(2.%,(w,\)). (B22)
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S,
U, '\
A

%
-/

FIG. 1. The region Sg , and the complement of the region U, .

We will need this bound in Subsection III A. Similarly, from (A38) one has

E_(-W"‘_)\)_e(“—)\)lnw=exp(§f (w,\ M)) (B23)
C(w+pw) e

and the bound on the lhs following from (B20) will be used several times in Subsection IV A. For
the applications of (B19) and (B20) we do not need a bound on the parameter dependence of
C, and C,; continuity in the parameters suffices. As concerns (B21), however, it is important to
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have more information on Cs. Indeed, in Subsection IV A we shall use (B21) on four occasions;
in two cases the parameters vary over C-compacts, but in the remaining applications one or two

parameters go to infinity.
In order to control this divergence, we first note that the function

shpt
h(t,p)= - (B24)
satisfies the bounds
|in(te'®,p)<d;(x)Ipl " 'exp(|plt), V(z,¢.p) €[0.2) X[~ x,x]XC, (B25)

with d; positive non-decreasing functions on [0,7/2), and j=0,1,2. (Write h as
pf(pt),f(x)=shx/x, to verify this.) Factorizing f; accordingly, we deduce that the function C; in
the bound (B1) on f5 satisfies

€300 I SOl (N2 + o+ [+ ] [N k] + [ ] (B26)

with d positive and non-decreasing on [0,7/2). This bound on the parameter dependence is
sufficient for our purposes.
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